Monads



This is part 25 of Categories for Programmers. Previously: F-Algebras. See the Table of Contents.

If we interpret endofunctors as ways of defining expressions, algebras let us evaluate them and monads let us form and manipulate them. By combining algebras with monads we not only gain a lot of functionality but we can also answer a few interesting questions. One such question concerns the relation between monads and adjunctions. As we’ve seen, every adjunction defines a monad (and a comonad). The question is: Can every monad (comonad) be derived from an adjunction? The answer is positive. There is a whole family of adjunctions that generate a given monad. I’ll show you two such adjunction.

Let’s review the definitions. A monad is an endofunctor m equipped with two natural transformations that satisfy some coherence conditions. The components of these transformations at a are:

ηa :: a -> m a
μa :: m (m a) -> m a

An algebra for the same endofunctor is a selection of a particular object — the carrier a — together with the morphism:

alg :: m a -> a

The first thing to notice is that the algebra goes in the opposite direction to ηa. The intuition is that ηa creates a trivial expression from a value of type a. The first coherence condition that makes the algebra compatible with the monad ensures that evaluating this expression using the algebra whose carrier is a gives us back the original value:

alg ∘ ηa = ida

The second condition arises from the fact that there are two ways of evaluating the doubly nested expression m (m a). We can first apply μa to flatten the expression, and then use the evaluator of the algebra; or we can apply the lifted evaluator to evaluate the inner expressions, and then apply the evaluator to the result. We’d like the two strategies to be equivalent:

alg ∘ μa = alg ∘ m alg

Here, m alg is the morphism resulting from lifting alg using the functor m. The following commuting diagrams describe the two conditions (I replaced m with T in anticipation of what follows):

We can also express these condition in Haskell:

alg . return = id
alg . join = alg . fmap alg

Let’s look at a small example. An algebra for a list endofunctor consists of some type a and a function that produces an a from a list of a. We can express this function using foldr by choosing both the element type and the accumulator type to be equal to a:

foldr :: (a -> a -> a) -> a -> [a] -> a

This particular algebra is specified by a two-argument function, let’s call it f, and a value z. The list functor happens to also be a monad, with return turning a value into a singleton list. The composition of the algebra, here foldr f z, after return takes x to:

foldr f z [x] = x `f` z

where the action of f is written in the infix notation. The algebra is compatible with the monad if the following coherence condition is satisfied for every x:

x `f` z = x

If we look at f as a binary operator, this condition tells us that z is the right unit.

The second coherence condition operates on a list of lists. The action of join concatenates the individual lists. We can then fold the resulting list. On the other hand, we can first fold the individual lists, and then fold the resulting list. Again, if we interpret f as a binary operator, this condition tells us that this binary operation is associative. These conditions are certainly fulfilled when (a, f, z) is a monoid.

T-algebras

Since mathematicians prefer to call their monads T, they call algebras compatible with them T-algebras. T-algebras for a given monad T in a category C form a category called the Eilenberg-Moore category, often denoted by CT. Morphisms in that category are homomorphisms of algebras. These are the same homomorphisms we’ve seen defined for F-algebras.

A T-algebra is a pair consisting of a carrier object and an evaluator, (a, f). There is an obvious forgetful functor UT from CT to C, which maps (a, f) to a. It also maps a homomorphism of T-algebras to a corresponding morphism between carrier objects in C. You may remember from our discussion of adjunctions that the left adjoint to a forgetful functor is called a free functor.

The left adjoint to UT is called FT. It maps an object a in C to a free algebra in CT. The carrier of this free algebra is T a. Its evaluator is a morphism from T (T a) back to T a. Since T is a monad, we can use the monadic μa (Haskell join) as the evaluator.

We still have to show that this is a T-algebra. For that, two coherence conditions must be satisified:

alg ∘ ηTa = idTa
alg ∘ μa = alg ∘ T alg

But these are just monadic laws, if you plug in μ for the algebra.

As you may recall, every adjunction defines a monad. It turns out that the adjunction between FT and UT defines the very monad T that was used in the construction of the Eilenberg-Moore category. Since we can perform this construction for every monad, we conclude that every monad can be generated from an adjunction. Later I’ll show you that there is another adjunction that generates the same monad.

Here’s the plan: First I’ll show you that FT is indeed the left adjoint of UT. I’ll do it by defining the unit and the counit of this adjunction and proving that the corresponding triangular identities are satisfied. Then I’ll show you that the monad generated by this adjunction is indeed our original monad.

The unit of the adjunction is the natural transformation:

η :: I -> UT ∘ FT

Let’s calculate the a component of this transformation. The identity functor gives us a. The free functor produces the free algebra (T a, μa), and the forgetful functor reduces it to T a. Altogether we get a mapping from a to T a. We’ll simply use the unit of the monad T as the unit of this adjunction.

Let’s look at the counit:

ε :: FT ∘ UT -> I

Let’s calculate its component at some T-algebra (a, f). The forgetful functor forgets the f, and the free functor produces the pair (T a, μa). So in order to define the component of the counit ε at (a, f), we need the right morphism in the Eilenberg-Moore category, or a homomorphism of T-algebras:

(T a, μa) -> (a, f)

Such homomorphism should map the carrier T a to a. Let’s just resurrect the forgotten evaluator f. This time we’ll use it as a homomorphism of T-algebras. Indeed, the same commuting diagram that makes f a T-algebra may be re-interpreted to show that it’s a homomorphism of T-algebras:


We have thus defined the component of the counit natural transformation ε at (a, f) (an object in the category of T-algebras) to be f.

To complete the adjunction we also need to show that the unit and the counit satisfy triangular identites. These are:

The first one holds because of the unit law for the monad T. The second is just the law of the T-algebra (a, f).

We have established that the two functors form an adjunction:

FT ⊣ UT

Every adjunction gives rise to a monad. The round trip

UT ∘ FT

is the endofunctor in C that gives rise to the corresponding monad. Let’s see what its action on an object a is. The free algebra created by FT is (T a, μa). The forgetful functor FT drops the evaluator. So, indeed, we have:

UT ∘ FT = T

As expected, the unit of the adjunction is the unit of the monad T.

You may remember that the counint of the adjunction produces monadic muliplication through the following formula:

μ = R ∘ ε ∘ L

This is a horizontal composition of three natural transformations, two of them being identity natural transformations mapping, respectively, L to L and R to R. The one in the middle, the counit, is a natural transformation whose component at an algebra (a, f) is f.

Let’s calculate the component μa. We first horizontally compose ε after FT, which results in the component of ε at FTa. Since FT takes a to the algebra (T a, μa), and ε picks the evaluator, we end up with μa. Horizontal composition on the left with UT doesn’t change anything, since the action of UT on morphisms is trivial. So, indeed, the μ obtained from the adjunction is the same as the μ of the original monad T.

The Kleisli Category

We’ve seen the Kleisli category before. It’s a category constructed from another category C and a monad T. We’ll call this category CT. The objects in the Kleisli category CT are the objects of C, but the morphisms are different. A morphism fK from a to b in the Kleisli category corresponds to a morphism f from a to T b in the original category. We call this morphism a Kleisli arrow from a to b.

Composition of morphisms in the Kleisli category is defined in terms of monadic composition of Kleisli arrows. For instance, let’s compose gK after fK. In the Kleisli category we have:

fK :: a -> b
gK :: b -> c

which, in the category C, corresponds to:

f :: a -> T b
g :: b -> T c

We define the composition:

hK = gK ∘ fK

as a Kleisli arrow in C

h :: a -> T c
h = μ ∘ (T g) ∘ f

In Haskell we would write it as:

h = join . fmap g . f

There is a functor F from C to CT which acts trivially on objects. On morphims, it maps f in C to a morphism in CT by creating a Kleisli arrow that embellishes the return value of f. Given a morphism:

f :: a -> b

it creates a morphism in CT with the corresponding Kleisli arrow:

η ∘ f

In Haskell we’d write it as:

return . f

We can also define a functor G from CT back to C. It takes an object a from the Kleisli category and maps it to an object T a in C. Its action on a morphism fK corresponding to a Kleisli arrow:

f :: a -> T b

is a morphism in C:

T a -> T b

given by first lifting f and then applying μ:

μT b ∘ T f

In Haskell notation this would read:

G fT = join . fmap f

You may recognize this as the definition of monadic bind in terms of join.

It’s easy to see that the two functors form an adjunction:

F ⊣ G

and their composition G ∘ F reproduces the original monad T.

So this is the second adjunction that produces the same monad. In fact there is a whole category of adjunctions Adj(C, T) that result in the same monad T on C. The Kleisli adjunction we’ve just seen is the initial object in this category, and the Eilenberg-Moore adjunction is the terminal object.

Coalgebras for Comonads

Analogous constructions can be done for any comonad W. We can define a category of coalgebras that are compatible with a comonad. They make the following diagrams commute:

where coa is the coevaluation morphism of the coalgebra whose carrier is a:

coa :: a -> W a

and ε and δ are the two natural transformations defining the comonad (in Haskell, their components are called extract and duplicate).

There is an obvious forgetful functor UW from the category of these coalgebras to C. It just forgets the coevaluation. We’ll consider its right adjoint FW.

UW ⊣ FW

The right adjoint to a forgetful functor is called a cofree functor. FW generates cofree coalgebras. It assigns, to an object a in C, the coalgebra (W a, δa). The adjunction reproduces the original comonad as the composite FW ∘ UW.

Similarly, we can construct a co-Kleisli category with co-Kleisli arrows and regenerate the comonad from the corresponding adjunction.

Lenses

Let’s go back to our discussion of lenses. A lens can be written as a coalgebra:

coalgs :: a -> Store s a

for the functor Store s:

data Store s a = Store (s -> a) s

This coalgebra can be also expressed as a pair of functions:

set :: a -> s -> a
get :: a -> s

(Think of a as standing for “all,” and s as a “small” part of it.) In terms of this pair, we have:

coalgs a = Store (set a) (get a)

Here, a is a value of type a. Notice that partially applied set is a function s->a.

We also know that Store s is a comonad:

instance Comonad (Store s) where
  extract (Store f s) = f s
  duplicate (Store f s) = Store (Store f) s

The question is: Under what conditions is a lens a coalgebra for this comonad? The first coherence condition:

εa ∘ coalg = ida

translates to:

set a (get a) = a

This is the lens law that expresses the fact that if you set a field of the structure a to its previous value, nothing changes.

The second condition:

fmap colag ∘ coalg = δa ∘ coalg

requires a little more work. First, recall the definition of fmap for the Store functor:

fmap g (Store f s) = Store (g . f) s

Applying fmap coalg to the result of coalg gives us:

Store (coalg . set a) (get a)

On the other hand, applying duplicate to the result of coalg produces:

Store (Store (set a)) (get a)

For these two expressions to be equal, the two functions under Store must be equal when acting on an arbitrary s:

coalg (set a s) = Store (set a) s

Expanding coalg, we get:

Store (set (set a s)) (get (set a s)) = Store (set a) s

This is equivalent to two remaining lens laws. The first one:

set (set a s) = set a

tells us that setting the value of a field twice is the same as setting it once. The second law:

get (set a s) = s

tells us that getting a value of a field that was set to s gives s back.

In other words, a well-behaved lens is indeed a comonad coalgebra for the Store functor.

Challenges

  1. What is the action of the free functor F :: C -> CT on morphisms. Hint: use the naturality condition for monadic μ.
  2. Define the adjunction:
    UW ⊣ FW
  3. Prove that the above adjunction reproduces the original comonad.

Acknowledgment

I’d like to thank Gershom Bazerman for helpful comments.

Next: Ends and Coends.


This is part 22 of Categories for Programmers. Previously: Monads and Effects. See the Table of Contents.

If you mention monads to a programmer, you’ll probably end up talking about effects. To a mathematician, monads are about algebras. We’ll talk about algebras later — they play an important role in programming — but first I’d like to give you a little intuition about their relation to monads. For now, it’s a bit of a hand-waving argument, but bear with me.

Algebra is about creating, manipulating, and evaluating expressions. Expressions are built using operators. Consider this simple expression:

x2 + 2 x + 1

This expression is formed using variables like x, and constants like 1 or 2, bound together with operators like plus or times. As programmers, we often think of expressions as trees.

exptree

Trees are containers so, more generally, an expression is a container for storing variables. In category theory, we represent containers as endofunctors. If we assign the type a to the variable x, our expression will have the type m a, where m is an endofunctor that builds expression trees. (Nontrivial branching expressions are usually created using recursively defined endofunctors.)

What’s the most common operation that can be performed on an expression? It’s substitution: replacing variables with expressions. For instance, in our example, we could replace x with y - 1 to get:

(y - 1)2 + 2 (y - 1) + 1

Here’s what happened: We took an expression of type m a and applied a transformation of type a -> m b (b represents the type of y). The result is an expression of type m b. Let me spell it out:

m a -> (a -> m b) -> m b

Yes, that’s the signature of monadic bind.

That was a bit of motivation. Now let’s get to the math of the monad. Mathematicians use different notation than programmers. They prefer to use the letter T for the endofunctor, and Greek letters: μ for join and η for return. Both join and return are polymorphic functions, so we can guess that they correspond to natural transformations.

Therefore, in category theory, a monad is defined as an endofunctor T equipped with a pair of natural transformations μ and η.

μ is a natural transformation from the square of the functor T2 back to T. The square is simply the functor composed with itself, T ∘ T (we can only do this kind of squaring for endofunctors).

μ :: T2 -> T

The component of this natural transformation at an object a is the morphism:

μa :: T (T a) -> T a

which, in Hask, translates directly to our definition of join.

η is a natural transformation between the identity functor I and T:

η :: I -> T

Considering that the action of I on the object a is just a, the component of η is given by the morphism:

ηa :: a -> T a

which translates directly to our definition of return.

These natural transformations must satisfy some additional laws. One way of looking at it is that these laws let us define a Kleisli category for the endofunctor T. Remember that a Kleisli arrow between a and b is defined as a morphism a -> T b. The composition of two such arrows (I’ll write it as a circle with the subscript T) can be implemented using μ:

g ∘T f = μc ∘ (T g) ∘ f

where

f :: a -> T b
g :: b -> T c

Here T, being a functor, can be applied to the morphism g. It might be easier to recognize this formula in Haskell notation:

f >=> g = join . fmap g . f

or, in components:

(f >=> g) a = join (fmap g (f a))

In terms of the algebraic interpretation, we are just composing two successive substitutions.

For Kleisli arrows to form a category we want their composition to be associative, and ηa to be the identity Kleisli arrow at a. This requirement can be translated to monadic laws for μ and η. But there is another way of deriving these laws that makes them look more like monoid laws. In fact μ is often called multiplication, and η unit.

Roughly speaking, the associativity law states that the two ways of reducing the cube of T, T3, down to T must give the same result. Two unit laws (left and right) state that when η is applied to T and then reduced by μ, we get back T.

Things are a little tricky because we are composing natural transformations and functors. So a little refresher on horizontal composition is in order. For instance, T3 can be seen as a composition of T after T2. We can apply to it the horizontal composition of two natural transformations:

IT ∘ μ

assoc1

and get T∘T; which can be further reduced to T by applying μ. IT is the identity natural transformation from T to T. You will often see the notation for this type of horizontal composition IT ∘ μ shortened to T∘μ. This notation is unambiguous because it makes no sense to compose a functor with a natural transformation, therefore T must mean IT in this context.

We can also draw the diagram in the (endo-) functor category [C, C]:

assoc2

Alternatively, we can treat T3 as the composition of T2∘T and apply μ∘T to it. The result is also T∘T which, again, can be reduced to T using μ. We require that the two paths produce the same result.

assoc

Similarly, we can apply the horizontal composition η∘T to the composition of the identity functor I after T to obtain T2, which can then be reduced using μ. The result should be the same as if we applied the identity natural transformation directly to T. And, by analogy, the same should be true for T∘η.

unitlawcomp-1

You can convince yourself that these laws guarantee that the composition of Kleisli arrows indeed satisfies the laws of a category.

The similarities between a monad and a monoid are striking. We have multiplication μ, unit η, associativity, and unit laws. But our definition of a monoid is too narrow to describe a monad as a monoid. So let’s generalize the notion of a monoid.

Monoidal Categories

Let’s go back to the conventional definition of a monoid. It’s a set with a binary operation and a special element called unit. In Haskell, this can be expressed as a typeclass:

class Monoid m where
    mappend :: m -> m -> m
    mempty  :: m

The binary operation mappend must be associative and unital (i.e., multiplication by the unit mempty is a no-op).

Notice that, in Haskell, the definition of mappend is curried. It can be interpreted as mapping every element of m to a function:

mappend :: m -> (m -> m)

It’s this interpretation that gives rise to the definition of a monoid as a single-object category where endomorphisms (m -> m) represent the elements of the monoid. But because currying is built into Haskell, we could as well have started with a different definition of multiplication:

mu :: (m, m) -> m

Here, the cartesian product (m, m) becomes the source of pairs to be multiplied.

This definition suggests a different path to generalization: replacing the cartesian product with categorical product. We could start with a category where products are globally defined, pick an object m there, and define multiplication as a morphism:

μ :: m × m -> m

We have one problem though: In an arbitrary category we can’t peek inside an object, so how do we pick the unit element? There is a trick to it. Remember how element selection is equivalent to a function from the singleton set? In Haskell, we could replace the definition of mempty with a function:

eta :: () -> m

The singleton is the terminal object in Set, so it’s natural to generalize this definition to any category that has a terminal object t:

η :: t -> m

This lets us pick the unit “element” without having to talk about elements.

Unlike in our previous definition of a monoid as a single-object category, monoidal laws here are not automatically satisfied — we have to impose them. But in order to formulate them we have to establish the monoidal structure of the underlying categorical product itself. Let’s recall how monoidal structure works in Haskell first.

We start with associativity. In Haskell, the corresponding equational law is:

mu x (mu y z) = mu (mu x y) z

Before we can generalize it to other categories, we have to rewrite it as an equality of functions (morphisms). We have to abstract it away from its action on individual variables — in other words, we have to use point-free notation. Knowning that the cartesian product is a bifunctor, we can write the left hand side as:

(mu . bimap id mu)(x, (y, z))

and the right hand side as:

(mu . bimap mu id)((x, y), z)

This is almost what we want. Unfortunately, the cartesian product is not strictly associative — (x, (y, z)) is not the same as ((x, y), z) — so we can’t just write point-free:

mu . bimap id mu = mu . bimap mu id

On the other hand, the two nestings of pairs are isomorphic. There is an invertible function called the associator that converts between them:

alpha :: ((a, b), c) -> (a, (b, c))
alpha ((x, y), z) = (x, (y, z))

With the help of the associator, we can write the point-free associativity law for mu:

mu . bimap id mu . alpha = mu . bimap mu id

We can apply a similar trick to unit laws which, in the new notation, take the form:

mu (eta (), x) = x
mu (x, eta ()) = x

They can be rewritten as:

(mu . bimap eta id) ((), x) = lambda ((), x)
(mu . bimap id eta) (x, ()) = rho (x, ())

The isomorphisms lambda and rho are called the left and right unitor, respectively. They witness the fact that the unit () is the identity of the cartesian product up to isomorphism:

lambda :: ((), a) -> a
lambda ((), x) = x
rho :: (a, ()) -> a
rho (x, ()) = x

The point-free versions of the unit laws are therefore:

mu . bimap id eta = lambda
mu . bimap eta id = rho

We have formulated point-free monoidal laws for mu and eta using the fact that the underlying cartesian product itself acts like a monoidal multiplication in the category of types. Keep in mind though that the associativity and unit laws for the cartesian product are valid only up to isomorphism.

It turns out that these laws can be generalized to any category with products and a terminal object. Categorical products are indeed associative up to isomorphism and the terminal object is the unit, also up to isomorphism. The associator and the two unitors are natural isomorphisms. The laws can be represented by commuting diagrams.

assocmon

Notice that, because the product is a bifunctor, it can lift a pair of morphisms — in Haskell this was done using bimap.

We could stop here and say that we can define a monoid on top of any category with categorical products and a terminal object. As long as we can pick an object m and two morphisms μ and η that satisfy monoidal laws, we have a monoid. But we can do better than that. We don’t need a full-blown categorical product to formulate the laws for μ and η. Recall that a product is defined through a universal construction that uses projections. We haven’t used any projections in our formulation of monoidal laws.

A bifunctor that behaves like a product without being a product is called a tensor product, often denoted by the infix operator ⊗. A definition of a tensor product in general is a bit tricky, but we won’t worry about it. We’ll just list its properties — the most important being associativity up to isomorphism.

Similarly, we don’t need the object t to be terminal. We never used its terminal property — namely, the existence of a unique morphism from any object to it. What we require is that it works well in concert with the tensor product. Which means that we want it to be the unit of the tensor product, again, up to isomorphism. Let’s put it all together:

A monoidal category is a category C equipped with a bifunctor called the tensor product:

⊗ :: C × C -> C

and a distinct object i called the unit object, together with three natural isomorphisms called, respectively, the associator and the left and right unitors:

αa b c :: (a ⊗ b) ⊗ c -> a ⊗ (b ⊗ c)
λa :: i ⊗ a -> a
ρa :: a ⊗ i -> a

(There is also a coherence condition for simplifying a quadruple tensor product.)

What’s important is that a tensor product describes many familiar bifunctors. In particular, it works for a product, a coproduct and, as we’ll see shortly, for the composition of endofunctors (and also for some more esoteric products like Day convolution). Monoidal categories will play an essential role in the formulation of enriched categories.

Monoid in a Monoidal Category

We are now ready to define a monoid in a more general setting of a monoidal category. We start by picking an object m. Using the tensor product we can form powers of m. The square of m is m ⊗ m. There are two ways of forming the cube of m, but they are isomorphic through the associator. Similarly for higher powers of m (that’s where we need the coherence conditions). To form a monoid we need to pick two morphisms:

μ :: m ⊗ m -> m
η :: i -> m

where i is the unit object for our tensor product.

monoid-1

These morphisms have to satisfy associativity and unit laws, which can be expressed in terms of the following commuting diagrams:

assoctensor

unitmon

Notice that it’s essential that the tensor product be a bifunctor because we need to lift pairs of morphisms to form products such as μ ⊗ id or η ⊗ id. These diagrams are just a straightforward generalization of our previous results for categorical products.

Monads as Monoids

Monoidal structures pop up in unexpected places. One such place is the functor category. If you squint a little, you might be able to see functor composition as a form of multiplication. The problem is that not any two functors can be composed — the target category of one has to be the source category of the other. That’s just the usual rule of composition of morphisms — and, as we know, functors are indeed morphisms in the category Cat. But just like endomorphisms (morphisms that loop back to the same object) are always composable, so are endofunctors. For any given category C, endofunctors from C to C form the functor category [C, C]. Its objects are endofunctors, and morphisms are natural transformations between them. We can take any two objects from this category, say endofunctors F and G, and produce a third object F ∘ G — an endofunctor that’s their composition.

Is endofunctor composition a good candidate for a tensor product? First, we have to establish that it’s a bifunctor. Can it be used to lift a pair of morphisms — here, natural transformations? The signature of the analog of bimap for the tensor product would look something like this:

bimap :: (a -> b) -> (c -> d) -> (a ⊗ c -> b ⊗ d)

If you replace objects by endofunctors, arrows by natural transformations, and tensor products by composition, you get:

(F -> F') -> (G -> G') -> (F ∘ G -> F' ∘ G')

which you may recognize as the special case of horizontal composition.

horizcomp

We also have at our disposal the identity endofunctor I, which can serve as the identity for endofunctor composition — our new tensor product. Moreover, functor composition is associative. In fact associativity and unit laws are strict — there’s no need for the associator or the two unitors. So endofunctors form a strict monoidal category with functor composition as tensor product.

What’s a monoid in this category? It’s an object — that is an endofunctor T; and two morphisms — that is natural transformations:

μ :: T ∘ T -> T
η :: I -> T

Not only that, here are the monoid laws:

assoc

unitlawcomp

They are exactly the monad laws we’ve seen before. Now you understand the famous quote from Saunders Mac Lane:

All told, monad is just a monoid in the category of endofunctors.

You might have seen it emblazoned on some t-shirts at functional programming conferences.

Monads from Adjunctions

An adjunction, L ⊣ R, is a pair of functors going back and forth between two categories C and D. There are two ways of composing them giving rise to two endofunctors, R ∘ L and L ∘ R. As per an adjunction, these endofunctors are related to identity functors through two natural transformations called unit and counit:

η :: ID -> R ∘ L
ε :: L ∘ R -> IC

Immediately we see that the unit of an adjunction looks just like the unit of a monad. It turns out that the endofunctor R ∘ L is indeed a monad. All we need is to define the appropriate μ to go with the η. That’s a natural transformation between the square of our endofunctor and the endofunctor itself or, in terms of the adjoint functors:

R ∘ L ∘ R ∘ L -> R ∘ L

And, indeed, we can use the counit to collapse the L ∘ R in the middle. The exact formula for μ is given by the horizontal composition:

μ = R ∘ ε ∘ L

Monadic laws follow from the identities satisfied by the unit and counit of the adjunction and the interchange law.

We don’t see a lot of monads derived from adjunctions in Haskell, because an adjunction usually involves two categories. However, the definitions of an exponential, or a function object, is an exception. Here are the two endofunctors that form this adjunction:

L z = z × s
R b = s ⇒ b

You may recognize their composition as the familiar state monad:

R (L z) = s ⇒ (z × s)

We’ve seen this monad before in Haskell:

newtype State s a = State (s -> (a, s))

Let’s also translate the adjunction to Haskell. The left functor is the product functor:

newtype Prod s a = Prod (a, s)

and the right functor is the reader functor:

newtype Reader s a = Reader (s -> a)

They form the adjunction:

instance Adjunction (Prod s) (Reader s) where
  counit (Prod (Reader f, s)) = f s
  unit a = Reader (\s -> Prod (a, s))

You can easily convince yourself that the composition of the reader functor after the product functor is indeed equivalent to the state functor:

newtype State s a = State (s -> (a, s))

As expected, the unit of the adjunction is equivalent to the return function of the state monad. The counit acts by evaluating a function acting on its argument. This is recognizable as the uncurried version of the function runState:

runState :: State s a -> s -> (a, s)
runState (State f) s = f s

(uncurried, because in counit it acts on a pair).

We can now define join for the state monad as a component of the natural transformation μ. For that we need a horizontal composition of three natural transformations:

μ = R ∘ ε ∘ L

In other words, we need to sneak the counit ε across one level of the reader functor. We can’t just call fmap directly, because the compiler would pick the one for the State functor, rather than the Reader functor. But recall that fmap for the reader functor is just left function composition. So we’ll use function composition directly.

We have to first peel off the data constructor State to expose the function inside the State functor. This is done using runState:

ssa :: State s (State s a)
runState ssa :: s -> (State s a, s)

Then we left-compose it with the counit, which is defined by uncurry runState. Finally, we clothe it back in the State data constructor:

join :: State s (State s a) -> State s a
join ssa = State (uncurry runState . runState ssa)

This is indeed the implementation of join for the State monad.

It turns out that not only every adjunction gives rise to a monad, but the converse is also true: every monad can be factorized into a composition of two adjoint functors. Such factorization is not unique though.

We’ll talk about the other endofunctor L ∘ R in the next section.

Next: Comonads.


This is part 21 of Categories for Programmers. Previously: Monads: Programmer’s Definition. See the Table of Contents.

Now that we know what the monad is for — it lets us compose embellished functions — the really interesting question is why embellished functions are so important in functional programming. We’ve already seen one example, the Writer monad, where embellishment let us create and accumulate a log across multiple function calls. A problem that would otherwise be solved using impure functions (e.g., by accessing and modifying some global state) was solved with pure functions.

The Problem

Here is a short list of similar problems, copied from Eugenio Moggi’s seminal paper, all of which are traditionally solved by abandoning the purity of functions.

  • Partiality: Computations that may not terminate
  • Nondeterminism: Computations that may return many results
  • Side effects: Computations that access/modify state
    • Read-only state, or the environment
    • Write-only state, or a log
    • Read/write state
  • Exceptions: Partial functions that may fail
  • Continuations: Ability to save state of the program and then restore it on demand
  • Interactive Input
  • Interactive Output

What really is mind blowing is that all these problems may be solved using the same clever trick: turning to embellished functions. Of course, the embellishment will be totally different in each case.

You have to realize that, at this stage, there is no requirement that the embellishment be monadic. It’s only when we insist on composition — being able to decompose a single embellished function into smaller embellished functions — that we need a monad. Again, since each of the embellishments is different, monadic composition will be implemented differently, but the overall pattern is the same. It’s a very simple pattern: composition that is associative and equipped with identity.

The next section is heavy on Haskell examples. Feel free to skim or even skip it if you’re eager to get back to category theory or if you’re already familiar with Haskell’s implementation of monads.

The Solution

First, let’s analyze the way we used the Writer monad. We started with a pure function that performed a certain task — given arguments, it produced a certain output. We replaced this function with another function that embellished the original output by pairing it with a string. That was our solution to the logging problem.

We couldn’t stop there because, in general, we don’t want to deal with monolithic solutions. We needed to be able to decompose one log-producing function into smaller log-producing functions. It’s the composition of those smaller functions that led us to the concept of a monad.

What’s really amazing is that the same pattern of embellishing the function return types works for a large variety of problems that normally would require abandoning purity. Let’s go through our list and identify the embellishment that applies to each problem in turn.

Partiality

We modify the return type of every function that may not terminate by turning it into a “lifted” type — a type that contains all values of the original type plus the special “bottom” value . For instance, the Bool type, as a set, would contain two elements: True and False. The lifted Bool contains three elements. Functions that return the lifted Bool may produce True or False, or execute forever.

The funny thing is that, in a lazy language like Haskell, a never-ending function may actually return a value, and this value may be passed to the next function. We call this special value the bottom. As long as this value is not explicitly needed (for instance, to be pattern matched, or produced as output), it may be passed around without stalling the execution of the program. Because every Haskell function may be potentially non-terminating, all types in Haskell are assumed to be lifted. This is why we often talk about the category Hask of Haskell (lifted) types and functions rather than the simpler Set. It is not clear, though, that Hask is a real category (see this Andrej Bauer post).

Nondeterminism

If a function can return many different results, it may as well return them all at once. Semantically, a non-deterministic function is equivalent to a function that returns a list of results. This makes a lot of sense in a lazy garbage-collected language. For instance, if all you need is one value, you can just take the head of the list, and the tail will never be evaluated. If you need a random value, use a random number generator to pick the n-th element of the list. Laziness even allows you to return an infinite list of results.

In the list monad — Haskell’s implementation of nondeterministic computations — join is implemented as concat. Remember that join is supposed to flatten a container of containers — concat concatenates a list of lists into a single list. return creates a singleton list:

instance Monad [] where
    join = concat
    return x = [x]

The bind operator for the list monad is given by the general formula: fmap followed by join which, in this case gives:

as >>= k = concat (fmap k as)

Here, the function k, which itself produces a list, is applied to every element of the list as. The result is a list of lists, which is flattened using concat.

From the programmer’s point of view, working with a list is easier than, for instance, calling a non-deterministic function in a loop, or implementing a function that returns an iterator (although, in modern C++, returning a lazy range would be almost equivalent to returning a list in Haskell).

A good example of using non-determinism creatively is in game programming. For instance, when a computer plays chess against a human, it can’t predict the opponent’s next move. It can, however, generate a list of all possible moves and analyze them one by one. Similarly, a non-deterministic parser may generate a list of all possible parses for a given expression.

Even though we may interpret functions returning lists as non-deterministic, the applications of the list monad are much wider. That’s because stitching together computations that produce lists is a perfect functional substitute for iterative constructs — loops — that are used in imperative programming. A single loop can be often rewritten using fmap that applies the body of the loop to each element of the list. The do notation in the list monad can be used to replace complex nested loops.

My favorite example is the program that generates Pythagorean triples — triples of positive integers that can form sides of right triangles.

triples = do
    z <- [1..]
    x <- [1..z]
    y <- [x..z]
    guard (x^2 + y^2 == z^2)
    return (x, y, z)

The first line tells us that z gets an element from an infinite list of positive numbers [1..]. Then x gets an element from the (finite) list [1..z] of numbers between 1 and z. Finally y gets an element from the list of numbers between x and z. We have three numbers 1 <= x <= y <= z at our disposal. The function guard takes a Bool expression and returns a list of units:

guard :: Bool -> [()]
guard True  = [()]
guard False = []

This function (which is a member of a larger class called MonadPlus) is used here to filter out non-Pythagorean triples. Indeed, if you look at the implementation of bind (or the related operator >>), you’ll notice that, when given an empty list, it produces an empty list. On the other hand, when given a non-empty list (here, the singleton list containing unit [()]), bind will call the continuation, here return (x, y, z), which produces a singleton list with a verified Pythagorean triple. All those singleton lists will be concatenated by the enclosing binds to produce the final (infinite) result. Of course, the caller of triples will never be able to consume the whole list, but that doesn’t matter, because Haskell is lazy.

The problem that normally would require a set of three nested loops has been dramatically simplified with the help of the list monad and the do notation. As if that weren’t enough, Haskell let’s you simplify this code even further using list comprehension:

triples = [(x, y, z) | z <- [1..]
                     , x <- [1..z]
                     , y <- [x..z]
                     , x^2 + y^2 == z^2]

This is just further syntactic sugar for the list monad (strictly speaking, MonadPlus).

You might see similar constructs in other functional or imperative languages under the guise of generators and coroutines.

Read-Only State

A function that has read-only access to some external state, or environment, can be always replaced by a function that takes that environment as an additional argument. A pure function (a, e) -> b (where e is the type of the environment) doesn’t look, at first sight, like a Kleisli arrow. But as soon as we curry it to a -> (e -> b) we recognize the embellishment as our old friend the reader functor:

newtype Reader e a = Reader (e -> a)

You may interpret a function returning a Reader as producing a mini-executable: an action that given an environment produces the desired result. There is a helper function runReader to execute such an action:

runReader :: Reader e a -> e -> a
runReader (Reader f) e = f e

It may produce different results for different values of the environment.

Notice that both the function returning a Reader, and the Reader action itself are pure.

To implement bind for the Reader monad, first notice that you have to produce a function that takes the environment e and produces a b:

ra >>= k = Reader (\e -> ...)

Inside the lambda, we can execute the action ra to produce an a:

ra >>= k = Reader (\e -> let a = runReader ra e
                         in ...)

We can then pass the a to the continuation k to get a new action rb:

ra >>= k = Reader (\e -> let a  = runReader ra e
                             rb = k a
                         in ...)

Finally, we can run the action rb with the environment e:

ra >>= k = Reader (\e -> let a  = runReader ra e
                             rb = k a
                         in runReader rb e)

To implement return we create an action that ignores the environment and returns the unchanged value.

Putting it all together, after a few simplifications, we get the following definition:

instance Monad (Reader e) where
    ra >>= k = Reader (\e -> runReader (k (runReader ra e)) e)
    return x = Reader (\e -> x)

Write-Only State

This is just our initial logging example. The embellishment is given by the Writer functor:

newtype Writer w a = Writer (a, w)

For completeness, there’s also a trivial helper runWriter that unpacks the data constructor:

runWriter :: Writer w a -> (a, w)
runWriter (Writer (a, w)) = (a, w)

As we’ve seen before, in order to make Writer composable, w has to be a monoid. Here’s the monad instance for Writer written in terms of the bind operator:

instance (Monoid w) => Monad (Writer w) where 
    (Writer (a, w)) >>= k = let (a', w') = runWriter (k a)
                            in Writer (a', w `mappend` w')
    return a = Writer (a, mempty)

State

Functions that have read/write access to state combine the embellishments of the Reader and the Writer. You may think of them as pure functions that take the state as an extra argument and produce a pair value/state as a result: (a, s) -> (b, s). After currying, we get them into the form of Kleisli arrows a -> (s -> (b, s)), with the embellishment abstracted in the State functor:

newtype State s a = State (s -> (a, s))

Again, we can look at a Kleisli arrow as returning an action, which can be executed using the helper function:

runState :: State s a -> s -> (a, s)
runState (State f) s = f s

Different initial states may not only produce different results, but also different final states.

The implementation of bind for the State monad is very similar to that of the Reader monad, except that care has to be taken to pass the correct state at each step:

sa >>= k = State (\s -> let (a, s') = runState sa s
                            sb = k a
                        in runState sb s')

Here’s the full instance:

instance Monad (State s) where
    sa >>= k = State (\s -> let (a, s') = runState sa s 
                            in runState (k a) s')
    return a = State (\s -> (a, s))

There are also two helper Kleisli arrows that may be used to manipulate the state. One of them retrieves the state for inspection:

get :: State s s
get = State (\s -> (s, s))

and the other replaces it with a completely new state:

put :: s -> State s ()
put s' = State (\s -> ((), s'))

Exceptions

An imperative function that throws an exception is really a partial function — it’s a function that’s not defined for some values of its arguments. The simplest implementation of exceptions in terms of pure total functions uses the Maybe functor. A partial function is extended to a total function that returns Just a whenever it makes sense, and Nothing when it doesn’t. If we want to also return some information about the cause of the failure, we can use the Either functor instead (with the first type fixed, for instance, to String).

Here’s the Monad instance for Maybe:

instance Monad Maybe where
    Nothing >>= k = Nothing
    Just a  >>= k = k a
    return a = Just a

Notice that monadic composition for Maybe correctly short-circuits the computation (the continuation k is never called) when an error is detected. That’s the behavior we expect from exceptions.

Continuations

It’s the “Don’t call us, we’ll call you!” situation you may experience after a job interview. Instead of getting a direct answer, you are supposed to provide a handler, a function to be called with the result. This style of programming is especially useful when the result is not known at the time of the call because, for instance, it’s being evaluated by another thread or delivered from a remote web site. A Kleisli arrow in this case returns a function that accepts a handler, which represents “the rest of the computation”:

data Cont r a = Cont ((a -> r) -> r)

The handler a -> r, when it’s eventually called, produces the result of type r, and this result is returned at the end. A continuation is parameterized by the result type. (In practice, this is often some kind of status indicator.)

There is also a helper function for executing the action returned by the Kleisli arrow. It takes the handler and passes it to the continuation:

runCont :: Cont r a -> (a -> r) -> r
runCont (Cont k) h = k h

The composition of continuations is notoriously difficult, so its handling through a monad and, in particular, the do notation, is of extreme advantage.

Let’s figure out the implementation of bind. First let’s look at the stripped down signature:

(>>=) :: ((a -> r) -> r) -> 
         (a -> (b -> r) -> r) -> 
         ((b -> r) -> r)

Our goal is to create a function that takes the handler (b -> r) and produces the result r. So that’s our starting point:

ka >>= kab = Cont (\hb -> ...)

Inside the lambda, we want to call the function ka with the appropriate handler that represents the rest of the computation. We’ll implement this handler as a lambda:

runCont ka (\a -> ...)

In this case, the rest of the computation involves first calling kab with a, and then passing hb to the resulting action kb:

runCont ka (\a -> let kb = kab a
                  in runCont kb hb)

As you can see, continuations are composed inside out. The final handler hb is called from the innermost layer of the computation. Here’s the full instance:

instance Monad (Cont r) where
    ka >>= kab = Cont (\hb -> runCont ka (\a -> runCont (kab a) hb))
    return a = Cont (\ha -> ha a)

Interactive Input

This is the trickiest problem and a source of a lot of confusion. Clearly, a function like getChar, if it were to return a character typed at the keyboard, couldn’t be pure. But what if it returned the character inside a container? As long as there was no way of extracting the character from this container, we could claim that the function is pure. Every time you call getChar it would return exactly the same container. Conceptually, this container would contain the superposition of all possible characters.

If you’re familiar with quantum mechanics, you should have no problem understanding this analogy. It’s just like the box with the Schrödinger’s cat inside — except that there is no way to open or peek inside the box. The box is defined using the special built-in IO functor. In our example, getChar could be declared as a Kleisli arrow:

getChar :: () -> IO Char

(Actually, since a function from the unit type is equivalent to picking a value of the return type, the declaration of getChar is simplified to getChar :: IO Char.)

Being a functor, IO lets you manipulate its contents using fmap. And, as a functor, it can store the contents of any type, not just a character. The real utility of this approach comes to light when you consider that, in Haskell, IO is a monad. It means that you are able to compose Kleisli arrows that produce IO objects.

You might think that Kleisli composition would allow you to peek at the contents of the IO object (thus “collapsing the wave function,” if we were to continue the quantum analogy). Indeed, you could compose getChar with another Kleisli arrow that takes a character and, say, converts it to an integer. The catch is that this second Kleisli arrow could only return this integer as an (IO Int). Again, you’ll end up with a superposition of all possible integers. And so on. The Schrödinger’s cat is never out of the bag. Once you are inside the IO monad, there is no way out of it. There is no equivalent of runState or runReader for the IO monad. There is no runIO!

So what can you do with the result of a Kleisli arrow, the IO object, other than compose it with another Kleisli arrow? Well, you can return it from main. In Haskell, main has the signature:

main :: IO ()

and you are free to think of it as a Kleisli arrow:

main :: () -> IO ()

From that perspective, a Haskell program is just one big Kleisli arrow in the IO monad. You can compose it from smaller Kleisli arrows using monadic composition. It’s up to the runtime system to do something with the resulting IO object (also called IO action).

Notice that the arrow itself is a pure function — it’s pure functions all the way down. The dirty work is relegated to the system. When it finally executes the IO action returned from main, it does all kinds of nasty things like reading user input, modifying files, printing obnoxious messages, formatting a disk, and so on. The Haskell program never dirties its hands (well, except when it calls unsafePerformIO, but that’s a different story).

Of course, because Haskell is lazy, main returns almost immediately, and the dirty work begins right away. It’s during the execution of the IO action that the results of pure computations are requested and evaluated on demand. So, in reality, the execution of a program is an interleaving of pure (Haskell) and dirty (system) code.

There is an alternative interpretation of the IO monad that is even more bizarre but makes perfect sense as a mathematical model. It treats the whole Universe as an object in a program. Notice that, conceptually, the imperative model treats the Universe as an external global object, so procedures that perform I/O have side effects by virtue of interacting with that object. They can both read and modify the state of the Universe.

We already know how to deal with state in functional programming — we use the state monad. Unlike simple state, however, the state of the Universe cannot be easily described using standard data structures. But we don’t have to, as long as we never directly interact with it. It’s enough that we assume that there exists a type RealWorld and, by some miracle of cosmic engineering, the runtime is able to provide an object of this type. An IO action is just a function:

type IO a  =  RealWorld -> (a, RealWorld)

Or, in terms of the State monad:

type IO = State RealWorld

However, >=> and return for the IO monad have to be built into the language.

Interactive Output

The same IO monad is used to encapsulate interactive output. RealWorld is supposed to contain all output devices. You might wonder why we can’t just call output functions from Haskell and pretend that they do nothing. For instance, why do we have:

putStr :: String -> IO ()

rather than the simpler:

putStr :: String -> ()

Two reasons: Haskell is lazy, so it would never call a function whose output — here, the unit object — is not used for anything. And, even if it weren’t lazy, it could still freely change the order of such calls and thus garble the output. The only way to force sequential execution of two functions in Haskell is through data dependency. The input of one function must depend on the output of another. Having RealWorld passed between IO actions enforces sequencing.

Conceptually, in this program:

main :: IO ()
main = do
    putStr "Hello "
    putStr "World!"

the action that prints “World!” receives, as input, the Universe in which “Hello ” is already on the screen. It outputs a new Universe, with “Hello World!” on the screen.

Conclusion

Of course I have just scratched the surface of monadic programming. Monads not only accomplish, with pure functions, what normally is done with side effects in imperative programming, but they also do it with a high degree of control and type safety. They are not without drawbacks, though. The major complaint about monads is that they don’t easily compose with each other. Granted, you can combine most of the basic monads using the monad transformer library. It’s relatively easy to create a monad stack that combines, say, state with exceptions, but there is no formula for stacking arbitrary monads together.

Next: Monads Categorically.


This is part 20 of Categories for Programmers. Previously: Free/Forgetful Adjunctions. See the Table of Contents.

Programmers have developed a whole mythology around monads. It’s supposed to be one of the most abstract and difficult concepts in programming. There are people who “get it” and those who don’t. For many, the moment when they understand the concept of the monad is like a mystical experience. The monad abstracts the essence of so many diverse constructions that we simply don’t have a good analogy for it in everyday life. We are reduced to groping in the dark, like those blind men touching different parts of the elephant end exclaiming triumphantly: “It’s a rope,” “It’s a tree trunk,” or “It’s a burrito!”

Let me set the record straight: The whole mysticism around the monad is the result of a misunderstanding. The monad is a very simple concept. It’s the diversity of applications of the monad that causes the confusion.

As part of research for this post I looked up duct tape (a.k.a., duck tape) and its applications. Here’s a little sample of things that you can do with it:

  • sealing ducts
  • fixing CO2 scrubbers on board Apollo 13
  • wart treatment
  • fixing Apple’s iPhone 4 dropped call issue
  • making a prom dress
  • building a suspension bridge

Now imagine that you didn’t know what duct tape was and you were trying to figure it out based on this list. Good luck!

So I’d like to add one more item to the collection of “the monad is like…” clichés: The monad is like duct tape. Its applications are widely diverse, but its principle is very simple: it glues things together. More precisely, it composes things.

This partially explains the difficulties a lot of programmers, especially those coming from the imperative background, have with understanding the monad. The problem is that we are not used to thinking of programing in terms of function composition. This is understandable. We often give names to intermediate values rather than pass them directly from function to function. We also inline short segments of glue code rather than abstract them into helper functions. Here’s an imperative-style implementation of the vector-length function in C:

double vlen(double * v) {
  double d = 0.0;
  int n;
  for (n = 0; n < 3; ++n)
    d += v[n] * v[n];
  return sqrt(d);
}

Compare this with the (stylized) Haskell version that makes function composition explicit:

vlen = sqrt . sum . fmap  (flip (^) 2)

(Here, to make things even more cryptic, I partially applied the exponentiation operator (^) by setting its second argument to 2.)

I’m not arguing that Haskell’s point-free style is always better, just that function composition is at the bottom of everything we do in programming. And even though we are effectively composing functions, Haskell does go to great lengths to provide imperative-style syntax called the do notation for monadic composition. We’ll see its use later. But first, let me explain why we need monadic composition in the first place.

The Kleisli Category

We have previously arrived at the writer monad by embellishing regular functions. The particular embellishment was done by pairing their return values with strings or, more generally, with elements of a monoid. We can now recognize that such embellishment is a functor:

newtype Writer w a = Writer (a, w)

instance Functor (Writer w) where
  fmap f (Writer (a, w)) = Writer (f a, w)

We have subsequently found a way of composing embellished functions, or Kleisli arrows, which are functions of the form:

a -> Writer w b

It was inside the composition that we implemented the accumulation of the log.

We are now ready for a more general definition of the Kleisli category. We start with a category C and an endofunctor m. The corresponding Kleisli category K has the same objects as C, but its morphisms are different. A morphism between two objects a and b in K is implemented as a morphism:

a -> m b

in the original category C. It’s important to keep in mind that we treat a Kleisli arrow in K as a morphism between a and b, and not between a and m b.

In our example, m was specialized to Writer w, for some fixed monoid w.

Kleisli arrows form a category only if we can define proper composition for them. If there is a composition, which is associative and has an identity arrow for every object, then the functor m is called a monad, and the resulting category is called the Kleisli category.

In Haskell, Kleisli composition is defined using the fish operator >=>, and the identity arrrow is a polymorphic function called return. Here’s the definition of a monad using Kleisli composition:

class Monad m where
  (>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
  return :: a -> m a

Keep in mind that there are many equivalent ways of defining a monad, and that this is not the primary one in the Haskell ecosystem. I like it for its conceptual simplicity and the intuition it provides, but there are other definitions that are more convenient when programming. We’ll talk about them momentarily.

In this formulation, monad laws are very easy to express. They cannot be enforced in Haskell, but they can be used for equational reasoning. They are simply the standard composition laws for the Kleisli category:

(f >=> g) >=> h = f >=> (g >=> h) -- associativity
return >=> f = f                  -- left unit
f >=> return = f                  -- right unit

This kind of a definition also expresses what a monad really is: it’s a way of composing embellished functions. It’s not about side effects or state. It’s about composition. As we’ll see later, embellished functions may be used to express a variety of effects or state, but that’s not what the monad is for. The monad is the sticky duct tape that ties one end of an embellished function to the other end of an embellished function.

Going back to our Writer example: The logging functions (the Kleisli arrows for the Writer functor) form a category because Writer is a monad:

instance Monoid w => Monad (Writer w) where
    f >=> g = \a -> 
        let Writer (b, s)  = f a
            Writer (c, s') = g b
        in Writer (c, s `mappend` s')
    return a = Writer (a, mempty)

Monad laws for Writer w are satisfied as long as monoid laws for w are satisfied (they can’t be enforced in Haskell either).

There’s a useful Kleisli arrow defined for the Writer monad called tell. It’s sole purpose is to add its argument to the log:

tell :: w -> Writer w ()
tell s = Writer ((), s)

We’ll use it later as a building block for other monadic functions.

Fish Anatomy

When implementing the fish operator for different monads you quickly realize that a lot of code is repeated and can be easily factored out. To begin with, the Kleisli composition of two functions must return a function, so its implementation may as well start with a lambda taking an argument of type a:

(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
f >=> g = \a -> ...

The only thing we can do with this argument is to pass it to f:

f >=> g = \a -> let mb = f a
                in ...

At this point we have to produce the result of type m c, having at our disposal an object of type m b and a function g :: b -> m c. Let’s define a function that does that for us. This function is called bind and is usually written in the form of an infix operator:

(>>=) :: m a -> (a -> m b) -> m b

For every monad, instead of defining the fish operator, we may instead define bind. In fact the standard Haskell definition of a monad uses bind:

class Monad m where
    (>>=) :: m a -> (a -> m b) -> m b
    return :: a -> m a

Here’s the definition of bind for the Writer monad:

(Writer (a, w)) >>= f = let Writer (b, w') = f a
                        in  Writer (b, w `mappend` w')

It is indeed shorter than the definition of the fish operator.

It’s possible to further dissect bind, taking advantage of the fact that m is a functor. We can use fmap to apply the function a -> m b to the contents of m a. This will turn a into m b. The result of the application is therefore of type m (m b). This is not exactly what we want — we need the result of type m b — but we’re close. All we need is a function that collapses or flattens the double application of m. Such function is called join:

join :: m (m a) -> m a

Using join, we can rewrite bind as:

ma >>= f = join (fmap f ma)

That leads us to the third option for defining a monad:

class Functor m => Monad m where
    join :: m (m a) -> m a
    return :: a -> m a

Here we have explicitly requested that m be a Functor. We didn’t have to do that in the previous two definitions of the monad. That’s because any type constructor m that either supports the fish or bind operator is automatically a functor. For instance, it’s possible to define fmap in terms of bind and return:

fmap f ma = ma >>= \a -> return (f a)

For completeness, here’s join for the Writer monad:

join :: Monoid w => Writer w (Writer w a) -> Writer w a
join (Writer ((Writer (a, w')), w)) = Writer (a, w `mappend` w')

The do Notation

One way of writing code using monads is to work with Kleisli arrows — composing them using the fish operator. This mode of programming is the generalization of the point-free style. Point-free code is compact and often quite elegant. In general, though, it can be hard to understand, bordering on cryptic. That’s why most programmers prefer to give names to function arguments and intermediate values.

When dealing with monads it means favoring the bind operator over the fish operator. Bind takes a monadic value and returns a monadic value. The programmer may chose to give names to those values. But that’s hardly an improvement. What we really want is to pretend that we are dealing with regular values, not the monadic containers that encapsulate them. That’s how imperative code works — side effects, such as updating a global log, are mostly hidden from view. And that’s what the do notation emulates in Haskell.

You might be wondering then, why use monads at all? If we want to make side effects invisible, why not stick to an imperative language? The answer is that the monad gives us much better control over side effects. For instance, the log in the Writer monad is passed from function to function and is never exposed globally. There is no possibility of garbling the log or creating a data race. Also, monadic code is clearly demarcated and cordoned off from the rest of the program.

The do notation is just syntactic sugar for monadic composition. On the surface, it looks a lot like imperative code, but it translates directly to a sequence of binds and lambda expressions.

For instance, take the example we used previously to illustrate the composition of Kleisli arrows in the Writer monad. Using our current definitions, it could be rewritten as:

process :: String -> Writer String [String]
process = upCase >=> toWords

This function turns all characters in the input string to upper case and splits it into words, all the while producing a log of its actions.

In the do notation it would look like this:

process s = do
    upStr <- upCase s
    toWords upStr

Here, upStr is just a String, even though upCase produces a Writer:

upCase :: String -> Writer String String
upCase s = Writer (map toUpper s, "upCase ")

This is because the do block is desugared by the compiler to:

process s = 
   upCase s >>= \ upStr ->
       toWords upStr

The monadic result of upCase is bound to a lambda that takes a String. It’s the name of this string that shows up in the do block. When reading the line:

upStr <- upCase s

we say that upStr gets the result of upCase s.

The pseudo-imperative style is even more pronounced when we inline toWords. We replace it with the call to tell, which logs the string "toWords ", followed by the call to return with the result of splitting the string upStr using words. Notice that words is a regular function working on strings.

process s = do
    upStr <- upStr s
    tell "toWords "
    return (words upStr)

Here, each line in the do block introduces a new nested bind in the desugared code:

process s = 
    upCase s >>= \upStr ->
      tell "toWords " >>= \() ->
        return (words upStr)

Notice that tell produces a unit value, so it doesn’t have to be passed to the following lambda. Ignoring the contents of a monadic result (but not its effect — here, the contribution to the log) is quite common, so there is a special operator to replace bind in that case:

(>>) :: m a -> m b -> m b
m >> k = m >>= (\_ -> k)

The actual desugaring of our code looks like this:

process s = 
    upCase s >>= \upStr ->
      tell "toWords " >>
        return (words upStr)

In general, do blocks consist of lines (or sub-blocks) that either use the left arrow to introduce new names that are then available in the rest of the code, or are executed purely for side-effects. Bind operators are implicit between the lines of code. Incidentally, it is possible, in Haskell, to replace the formatting in the do blocks with braces and semicolons. This provides the justification for describing the monad as a way of overloading the semicolon.

Notice that the nesting of lambdas and bind operators when desugaring the do notation has the effect of influencing the execution of the rest of the do block based on the result of each line. This property can be used to introduce complex control structures, for instance to simulate exceptions.

Interestingly, the equivalent of the do notation has found its application in imperative languages, C++ in particular. I’m talking about resumable functions or coroutines. It’s not a secret that C++ futures form a monad. It’s an example of the continuation monad, which we’ll discuss shortly. The problem with continuations is that they are very hard to compose. In Haskell, we use the do notation to turn the spaghetti of “my handler will call your handler” into something that looks very much like sequential code. Resumable functions make the same transformation possible in C++. And the same mechanism can be applied to turn the spaghetti of nested loops into list comprehensions or “generators,” which are essentially the do notation for the list monad. Without the unifying abstraction of the monad, each of these problems is typically addressed by providing custom extensions to the language. In Haskell, this is all dealt with through libraries.

Next: Monads and Effects.


This is part 4 of the miniseries about solving a simple constraint-satisfaction problem:

  s e n d
+ m o r e
---------
m o n e y

using monads in C++. Previously: The Tale of Two Monads. To start from the beginning, go to Using Monads in C++ to Solve Constraints: 1.

In the previous post I showed some very general programming techniques based on functional data structures and monads. A lot of the code I wrote to solve this particular arithmetic puzzle is easily reusable. In fact the monadic approach is perfect for constructing libraries. I talked about it when discussing C++ futures and ranges. A monad is a pure expression of composability, and composability is the most important feature of any library.

You would be justified to think that rolling out a monad library just to solve a simple arithmetic puzzle is overkill. But I’m sure you can imagine a lot of other, more complex problems that could be solved using the same techniques. You might also fear that such functional methods — especially when implemented in C++, which is not optimized for this kind of programming — would lead to less performant code. This doesn’t matter too much if you are solving a one-shot problem, and the time you spend developing and debugging your code dwarfs the time it takes the program to complete execution. But even if performance were an issue and you were faced with a larger problem, functional code could be parallelized much easier than its imperative counterpart with no danger of concurrency bugs. So you might actually get better performance from functional code by running it in parallel.

Refactoring

In this installment I’d like to talk about something that a lot of functional programmers swear by: Functional programs are amazingly easy to refactor. Anybody who has tried to refactor C++ code can testify to how hard it is, and how long it takes to iron out all the bugs introduced by refactoring. With functional code, it’s a breeze. So let’s have another look at the code from the previous post and do some deep surgery on it. This is our starting point:

StateList<tuple> solve()
{
    StateList sel = &select;

    return mbind(sel, [=](int s) {
    return mbind(sel, [=](int e) {
    return mbind(sel, [=](int n) {
    return mbind(sel, [=](int d) {
    return mbind(sel, [=](int m) {
    return mbind(sel, [=](int o) {
    return mbind(sel, [=](int r) {
    return mbind(sel, [=](int y) {
        return mthen(guard(s != 0 && m != 0), [=]() {
            int send  = asNumber(vector{s, e, n, d});
            int more  = asNumber(vector{m, o, r, e});
            int money = asNumber(vector{m, o, n, e, y});
            return mthen(guard(send + more == money), [=]() {
                return mreturn(make_tuple(send, more, money));
            });
        });
    });});});});});});});});
}

What immediately stands out is the amount of repetition: eight lines of code look almost exactly the same. Conceptually, these lines correspond to eight nested loops that would be used in the imperative solution. The question is, how can we abstract over control structures, such as loops? But in our monadic implementation the loops are replaced with higher-order functions, and that opens up a path toward even further abstraction.

Reifying Substitutions

The first observation is that we are missing a data structure that should correspond to the central concept we use when describing the solution — the substitution. We are substituting numbers for letters, but we only see those letters as names of variables. A more natural implementation would use a map data structure, mapping characters to integers.

Notice, however, that this mapping has to be dynamically collected and torn down as we are exploring successive branches of the solution space. The imperative approach would demand backtracking. The functional approach makes use of persistent data structures. I have described such data structures previously, in particular a persistent red-black tree. It can be easily extended to a red-black map. You can find the implementation on github.

A red-black map is a generic data structure, which we’ll specialize for our use:

using Map = RBMap<char, int>;

A map lookup may fail, so it should either be implemented to return an optional, or use a default value in case of a failure. In our case we know that we never look up a value that’s not in the map (unless our code is buggy), so we can use a helper function that never fails:

int get(Map const & subst, char c)
{
    return subst.findWithDefault(-1, c);
}

Once we have objectified the substitution as a map, we can convert a whole string of characters to a number in one operation:

int toNumber(Map const & subst, string const & str)
{
    int acc = 0;
    for (char c : str)
    {
        int d = get(subst, c);
        acc = 10 * acc + d;
    }
    return acc;
}

There is one more thing that we may automate: finding the set of unique characters in the puzzle. Previously, we just figured out that they were s, e, n, d, m, o, r, y and hard-coded them into the solution. Now we can use a function, fashioned after a Haskell utility called nub:

string nub(string const & str)
{
    string result;
    for (char c : str)
    {
        if (result.find(c) == string::npos)
            result.push_back(c);
    }
    return result;
}

Don’t worry about the quadratic running time of nub — it’s only called once.

Recursion

With those preliminaries out of the way, let’s concentrate on analyzing the code. We have a series of nested mbind calls. The simplest thing is to turn these nested calls into recursion. This involves setting up the first recursive call, implementing the recursive function, and writing the code to terminate the recursion.

The main observation is that each level of nesting accomplishes one substitution of a character by a number. The recursion should end when we run out of characters to substitute.

Let’s first think about what data has to be passed down in a recursive call. One item is the string of characters that still need substituting. The second is the substitution map. While the first argument keeps shrinking, the second one keeps growing. The third argument is the number to be used for the next substitution.

Before we make the first recursive call, we have to prepare the initial arguments. We get the string of characters to be substituted by running nub over the text of our puzzle:

nub("sendmoremoney")

The second argument should start as an empty map. The third argument, the digit to be used for the next substitution, comes from binding the selection plan select<int> to a lambda that will call our recursive function. In Haskell, it’s common to call the auxiliary recursive function go, so that’s what we’ll do here as well:

StateList<tuple<int, int, int>> solve()
{
    StateList<int> sel = &select<int>;
    Map subst;
    return mbind(sel, [=](int s) {
        return go(nub("sendmoremoney"), subst, s);
    });
}

When implementing go, we have to think about terminating the recursion. But first, let’s talk about how to continue it.

We are called with the next digit to be used for substitution, so we should perform this substitution. This means inserting a key/value pair into our substitution map subst. The key is the first character from the string str. The value is the digit i that we were given.

subst.inserted(str[0], i)

Notice that, because the map is immutable, the method inserted returns a new map with one more entry. This is a persistent data structure, so the new map shares most of its data with its previous version. The creation of the new version takes logarithmic time in the number of entries (just as it does with a regular balanced tree that’s used in the Standard Library std::map). The advantage of using a persistent map is that we don’t have to do any backtracking — the unmodified version is still available after the return from the recursive call.

The recursive call to go expects three arguments: (1) the string of characters yet to be substituted — that will be the tail of the string that we were passed, (2) the new substitution map, and (3) the new digit n. We get this new digit by binding the digit selection sel to a lambda that makes the recursive call:

mbind(sel, [=](int n) {
    string tail(&str[1], &str[str.length()]);
    return go(tail, subst.inserted(str[0], i), n);
});

Now let’s consider the termination condition. Since go was called with the next digit to be substituted, we need at least one character in the string for this last substitution. So the termination is reached when the length of the string reaches one. We have to make the last substitution and then call the final function that prunes the bad substitutions. Here’s the complete implementation of go:

StateList<tuple<int, int, int>> go(string str, Map subst, int i)
{
    StateList<int> sel = &select<int>;

    assert(str.length() > 0);
    if (str.length() == 1)
        return prune(subst.inserted(str[0], i));
    else
    {
        return mbind(sel, [=](int n) {
            string tail(&str[1], &str[str.length()]);
            return go(tail, subst.inserted(str[0], i), n);
        });
    }
}

The function prune is lifted almost literally from the original implementation. The only difference is that we are now using a substitution map.

StateList<tuple<int, int, int>> prune(Map subst)
{
    return mthen(guard(get(subst, 's') != 0 && get(subst, 'm') != 0), 
      [=]() {
        int send  = toNumber(subst, "send");
        int more  = toNumber(subst, "more");
        int money = toNumber(subst, "money");
        return mthen(guard(send + more == money), [=]() {
            return mreturn(make_tuple(send, more, money));
        });
    });
}

The top-level code that starts the chain of events and displays the solution is left unchanged:

int main()
{
    List<int> lst{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
    cout << evalStateList(solve(), lst);
    return 0;
}

It’s a matter of opinion whether the refactored code is simpler or not. It’s definitely easier to generalize and it’s less error prone. But the main point is how easy it was to make the refactorization. The reason for that is that, in functional code there are no hidden dependencies, because there are no hidden side effects. What would usually be considered a side effect in imperative code is accomplished using pure functions and monadic binding. There is no way to forget that a given function works with state, because a function that deals with state has the state specified in its signature — it returns a StateList. And it doesn’t itself modify the state. In fact it doesn’t have access to the state. It just composes functions that will modify the state when executed. That’s why we were able to move these functions around so easily.

A Word About Syntax

Monadic code in C++ is artificially complex. That’s because C++ was not designed for functional programming. The same program written in Haskell is much shorter. Here it is, complete with the helper functions prune, get, and toNumber:

solve = StateL select >>= go (nub "sendmoremoney") M.empty
  where
    go [c] subst i = prune (M.insert c i subst)
    go (c:cs) subst i = StateL select >>= go cs (M.insert c i subst)
    prune subst = do
        guard (get 's' /= 0 && get 'm' /= 0)
        let send  = toNumber "send"
            more  = toNumber "more"
            money = toNumber "money"
        guard (send + more == money)
        return (send, more, money)
      where
        get c = fromJust (M.lookup c subst)
        toNumber str = asNumber (map get str)
        asNumber = foldl (\t u -> t*10 + u) 0
main = print $ evalStateL solve [0..9]

Some of the simplification comes from using the operator >>= in place of mbind, and a simpler syntax for lambdas. But there is also some built-in syntactic sugar for chains of monadic bindings in the form of the do notation. You see an example of it in the implementation of prune.

The funny thing is that C++ is on the verge of introducing something equivalent to do notation called resumable functions. There is a very strong proposal for resumable functions in connection with the future monad, dealing with asynchronous functions. There is talk of using it with generators, or lazy ranges, which are a version of the list monad. But there is still a need for a push towards generalizing resumable functions to user-defined monads, like the one I described in this series. It just doesn’t make sense to add separate language extensions for each aspect of the same general pattern. This pattern has been known in functional programming for a long time and it’s called a monad. It’s a very useful and versatile pattern whose importance has been steadily growing as the complexity of software projects increases.

Bibliography

  1. The code for this blog is available on github.
  2. Douglas M. Auclair, MonadPlus: What a Super Monad!, The Monad.Reader Issue 11, August 25, 2008. It contains the Haskell implementation of the solution to this puzzle.
  3. Justin Le, Unique sample drawing & searches with List and StateT — “Send more money”. It was the blog post that inspired this series.

This is the second part of the cycle “Using Monads in C++ to Solve Constraints” in which I’m illustrating functional techniques using the example of a simple puzzle:

  s e n d
+ m o r e
---------
m o n e y

Previously, I talked about using the list monad to search the breadth of the solution space.

What would you do if you won a lottery? Would you buy a sports car, drop your current job, and go on a trip across the United States? Maybe you would start your own company, multiply the money, and then buy a private jet?

We all like making plans, but they are often contingent on the state of our finances. Such plans can be described by functions. For instance, the car-buying plan is a function:

pair<Car, Cash> buyCar(Cash cashIn)

The input is some amount of Cash, and the output is a brand new Car and the leftover Cash (not necessarily a positive number!).

In general, a financial plan is a function that takes cash and returns the result paired with the new value of cash. It can be described generically using a template:

template<class A>
using Plan = function<pair<A, Cash>(Cash)>;

You can combine smaller plans to make bigger plans. For instance, you may use the leftover cash from your car purchase to finance your trip, or invest in a business, and so on.

There are some things that you already own, and you can trivially include them in your plans:

template<class A>
Plan<A> got_it(A a)
{
    return [a](Cash s) { return make_pair(a, s); };
}

What does all this daydreaming have to do with the solution to our puzzle? I mentioned previously that we needed to keep track of state, and this is how functional programmers deal with state. Instead of relying on side effects to silently modify the state, they write code that generates plans of action.

An imperative programmer, on the other hand, might implement the car-buying procedure by passing it a bank object, and the withdrawal of money would be a side effect of the purchase. Or, the horror!, the bank object could be global.

In functional programming, each individual plan is a function: The state comes in, and the new state goes out, paired with whatever value the function was supposed to produce in the first place. These little plans are aggregated into bigger plans. Finally, the master plan is executed — that’s when the actual state is passed in and the result comes out together with a new state. We can do the same in modern C++ using lambdas.

You might be familiar with a similar technique used with expression templates in C++. Expression templates form the basis of efficient implementation of matrix calculus, where expressions involving matrices and vectors are not evaluated on the spot but rather converted to parse trees. These trees may then be evaluated using more efficient techniques. You can think of an expression template as a plan for evaluating the final result.

The State Monad

SelectionsWithLists

To find the solution to our puzzle, we will generate substitutions by picking digits from a list of integers. This list of integers will be our state.

using State = List<int>;

We will be using a persistent list, so we won’t have to worry about backtracking. Persistent lists are never mutated — all their versions persist, and we can go back to them without fearing that they may have changed. We’ll need that when we combine our state calculations with the list monad to get the final solution. For now, we’ll just consider one substitution.

We’ll be making and combining all kinds of plans that rely on, and produce new state:

template<class A>
using Plan = function<pair<A, State>(State)>;

We can always run a plan, provided we have the state available:

template<class A>
pair<A, State> runPlan(Plan<A> pl, State s)
{
    return pl(s);
}

You may recall from the previous post that the essence of every monad is the ability to compose smaller items into bigger ones. In the case of the state monad we need the ability to compose plans of action.

For instance, suppose that you know how to generate a plan to travel across the United States on a budget, as long as you have a car. You don’t have a car though. Not to worry, you have a plan to get a car. It should be easy to generate a composite plan that involves buying the car and then continuing with your trip.

Notice the two ingredients: one is the plan to buy a car: Plan<Car>. The second ingredient is a function that takes a car and produces the plan for your trip, Plan<Trip>. This function is the continuation that leads to your final goal: it’s a function of the type Plan<Trip>(Car). And the continuation itself may in turn be a composite of many smaller plans.

So here’s the function mbind that binds a plan pl to a continuation k. The continuation uses the output of the plan pl to generate another plan. The function mbind is supposed to return a new composite plan, so it must return a lambda. Like any other plan, this lambda takes a state and returns a pair: value, state. We’ll implement this lambda for the most general case.

The logic is simple. Inside the lambda we will have the state available, so we can run the plan pl. We get back a pair: the value of type A and the new state. We pass this value to the continuation k and get back a new plan. Finally, we run that plan with the new state and we’re done.

template<class A, class F>
auto mbind(Plan<A> pl, F k) -> decltype(k(pl(State()).first))
{
    using B = decltype(k(pl(State()).first)(State()).first);
    // this should really be done with concepts
    static_assert(std::is_convertible<
        F, std::function<Plan<B>(A)>> ::value,
        "mbind requires a function type Plan<B>(A)");

    return [pl, k](State s) {
        pair<A, State> ps = runPlan(pl, s);
        Plan<B> plB = k(ps.first);
        return runPlan(plB, ps.second); // new state!
    };
}

Notice that all this running of plans inside mbind doesn’t happen immediately. It happens when the lambda is executed, which is when the larger plan is run (possibly as part of an even larger plan). So what mbind does is to create a new plan to be executed in the future.

And, as with every monad, there is a function that takes regular input and turns it into a trivial plan. I called it got_it before, but a more common name would be mreturn:

template<class A>
Plan<A> mreturn(A a)
{
    return [a](State s) { return make_pair(a, s); };
}

The state monad usually comes with two helper functions. The function getState gives direct access to the state by turning it into the return value:

Plan<State> getState()
{
    return [](State s) { return make_pair(s, s); };
}

Using getState you may examine the state when the plan is running, and dynamically select different branches of your plan. This makes monads very flexible, but it also makes the composition of different monads harder. We’ll see this in the next installment, when we compose the state monad with the list monad.

The second helper function is used to modify (completely replace) the state.

Plan<void*> putState(State newState)
{
    return [=](State s) { return make_pair(nullptr, newState); };
}

It doesn’t evaluate anything useful, so its return type is void* and the returned value is nullptr. Its only purpose is to encapsulate a side effect. What’s amazing is that you can do it and still preserve functional purity. There’s no better example of having your cake and eating it too.

Example

To demonstrate the state monad in action, let’s implement a tiny example. We start with a small plan that just picks the first number from a list (the list will be our state):

pair<int, List<int>> select(List<int> lst)
{
    int i = lst.front();
    return make_pair(i, lst.popped_front());
}

Persistent list method popped_front returns a list with its first element popped off. Typical of persistent data structures, this method doesn’t modify the original list. It doesn’t copy the list either — it just creates a pointer to its tail.

Here’s our first plan:

Plan<int> sel = &select;

Now we can create a more complex plan to produce a pair of integers:

Plan<pair<int, int>> pl = 
    mbind(sel, [=](int i) { return
    mbind(sel, [=](int j) { return
    mreturn(make_pair(i, j));
}); });

Let’s analyze this code. The first mbind takes a plan sel that selects the first element from a list (the list will be provided later, when we execute this plan). It binds it to the continuation (whose body I have grayed out) that takes the selected integer i and produces a plan to make a pair of integers. Here’s this continuation:

[=](int i) { return
    mbind(sel, [=](int j) { return
    mreturn(make_pair(i, j));
}); });

It binds the plan sel to another, smaller continuation that takes the selected element j and produces a plan to make a pair of integers. Here’s this smaller continuation:

[=](int j) { return
    mreturn(make_pair(i, j));
});

It combines the first integer i that was captured by the lambda, with the second integer j that is the argument to the lambda, and creates a trivial plan that returns a pair:

mreturn(make_pair(i, j));

Notice that we are using the same plan sel twice. But when this plan is executed inside of our final plan, it will return two different elements from the input list. When mbind is run, it first passes the state (the list of integers) to the first sel. It gets back the modified state — the list with the first element popped. It then uses this shorter list to execute the plan produced by the continuation. So the second sel gets the shortened list, and picks its first element, which is the second element of the original list. It, too, shortens the list, which is then passed to mreturn, which doesn’t modify it any more.

We can now run the final plan by giving it a list to pick from:

List<int> st{ 1, 2, 3 };
cout << runPlan(pl, st) << endl;

We are still not ready to solve the puzzle, but we are much closer. All we need is to combine the list monad with the state monad. I’m leaving this task for the next installment.

But here’s another look at the final solution:

StateL<tuple<int, int, int>> solve()
{
    StateL<int> sel = &select<int>;

    return mbind(sel, [=](int s) {
    return mbind(sel, [=](int e) {
    return mbind(sel, [=](int n) {
    return mbind(sel, [=](int d) {
    return mbind(sel, [=](int m) {
    return mbind(sel, [=](int o) {
    return mbind(sel, [=](int r) {
    return mbind(sel, [=](int y) {
        return mthen(guard(s != 0 && m != 0), [=]() {
            int send  = asNumber(vector<int>{s, e, n, d});
            int more  = asNumber(vector<int>{m, o, r, e});
            int money = asNumber(vector<int>{m, o, n, e, y});
            return mthen(guard(send + more == money), [=]() {
                return mreturn(make_tuple(send, more, money));
            });
        });
    });});});});});});});});
}

This time I didn’t rename mbind to for_each and mreturn to yield.

Now that you’re familiar with the state monad, you may appreciate the fact that the same sel passed as the argument to mbind will yield a different number every time, as long as the state list contains unique digits.

Before You Post a Comment

I know what you’re thinking: Why would I want to complicate my life with monads if there is a much simpler, imperative way of dealing with state? What’s the payoff of the functional approach? The immediate payoff is thread safety. In imperative programming mutable shared state is a never-ending source of concurrency bugs. The state monad and the use of persistent data structures eliminates the possibility of data races. And it does it without any need for synchronization (other than reference counting inside shared pointers).

I will freely admit that C++ is not the best language for functional programming, and that monadic code in C++ looks overly complicated. But, let’s face it, in C++ everything looks overly complicated. What I’m describing here are implementation details of something that should be encapsulated in an easy to use library. I’ll come back to it in the next installment of this mini-series.

Challenges

  1. Implement select from the example in the text using getState and putState.
  2. Implement evalPlan, a version of runPlan that only returns the final value, without the state.
  3. Implement mthen — a version of mbind where the continuation doesn’t take any arguments. It ignores the result of the Plan, which is the first argument to mthen (but it still runs it, and uses the modified state).
  4. Use the state monad to build a simple RPN calculator. The state is the stack (a List) of items:
    enum ItemType { Plus, Minus, Num };
    
    struct Item
    {
        ItemType _type;
        int _num;
        Item(int i) : _type(Num), _num(i) {}
        Item(ItemType t) : _type(t), _num(-1) {}
    };

    Implement the function calc() that creates a plan to evaluate an integer. Here’s the test code that should print -1:

    List<int> stack{ Item(Plus)
                   , Item(Minus)
                   , Item(4)
                   , Item(8)
                   , Item(3) };
    cout << evalPlan(calc(), stack) << endl;

    (The solution is available on github.)


I am sometimes asked by C++ programmers to give an example of a problem that can’t be solved without monads. This is the wrong kind of question — it’s like asking if there is a problem that can’t be solved without for loops. Obviously, if your language supports a goto, you can live without for loops. What monads (and for loops) can do for you is to help you structure your code. The use of loops and if statements lets you convert spaghetti code into structured code. Similarly, the use of monads lets you convert imperative code into declarative code. These are the kind of transformations that make code easier to write, understand, maintain, and generalize.

So here’s a problem that you may get as an interview question. It’s a small problem, so the advantages of various approaches might not be immediately obvious, especially if you’ve been trained all your life in imperative programming, and you are seeing monads for the first time.

You’re supposed write a program to solve this puzzle:

  s e n d
+ m o r e
---------
m o n e y

Each letter correspond to a different digit between 0 and 9. Before you continue reading this post, try to think about how you would approach this problem.

The Analysis

It never hurts to impress your interviewer with your general knowledge by correctly classifying the problem. This one belongs to the class of “constraint satisfaction problems.” The obvious constraint is that the numbers obtained by substituting letters with digits have to add up correctly. There are also some less obvious constraints, namely the numbers should not start with zero.

If you were to solve this problem using pencil and paper, you would probably come up with lots of heuristics. For instance, you would deduce that m must stand for 1 because that’s the largest possible carry from the addition of two digits (even if there is a carry from the previous column). Then you’d figure out that s must be either 8 or 9 to produce this carry, and so on. Given enough time, you could probably write an expert system with a large set of rules that could solve this and similar problems. (Mentioning an expert system could earn you extra points with the interviewer.)

However, the small size of the problem suggests that a simple brute force approach is probably best. The interviewer might ask you to estimate the number of possible substitutions, which is 10!/(10 – 8)! or roughly 2 million. That’s not a lot. So, really, the solution boils down to generating all those substitutions and testing the constraints for each.

The Straightforward Solution

The mind of an imperative programmer immediately sees the solution as a set of 8 nested loops (there are 8 unique letters in the problem: s, e, n, d, m, o, r, y). Something like this:

for (int s = 0; s < 10; ++s)
    for (int e = 0; e < 10; ++e)
        for (int n = 0; n < 10; ++n)
            for (int d = 0; d < 10; ++d)
                ...

and so on, until y. But then there is the condition that the digits have to be different, so you have to insert a bunch of tests like:

e != s
n != s && n != e
d != s && d != e && d != n

and so on, the last one involving 7 inequalities… Effectively you have replaced the uniqueness condition with 28 new constraints.

This would probably get you through the interview at Microsoft, Google, or Facebook, but really, can’t you do better than that?

The Smart Solution

Before I proceed, I should mention that what follows is almost a direct translation of a Haskell program from the blog post by Justin Le. I strongly encourage everybody to learn some Haskell, but in the meanwhile I’ll be happy to serve as your translator.

The problem with our naive solution is the 28 additional constraints. Well, I guess one could live with that — except that this is just a tiny example of a whole range of constraint satisfaction problems, and it makes sense to figure out a more general approach.

The problem can actually be formulated as a superposition of two separate concerns. One deals with the depth and the other with the breadth of the search for solutions.

Let me touch on the depth issue first. Let’s consider the problem of creating just one substitution of letters with numbers. This could be described as picking 8 digits from a list of 0, 1, …9, one at a time. Once a digit is picked, it’s no longer in the list. We don’t want to hard code the list, so we’ll make it a parameter to our algorithm. Notice that this approach works even if the list contains duplicates, or if the list elements are not easily comparable for equality (for instance, if they are futures). We’ll discuss the list-picking part of the problem in more detail later.

Now let’s talk about breadth: we have to repeat the above process for all possible picks. This is what the 8 nested loops were doing. Except that now we are in trouble because each individual pick is destructive. It removes items from the list — it mutates the list. This is a well known problem when searching through solution spaces, and the standard remedy is called backtracking. Once you have processed a particular candidate, you put the elements back in the list, and try the next one. Which means that you have to keep track of your state, either implicitly on your function’s stack, or in a separate explicit data structure.

Wait a moment! Weren’t we supposed to talk about functional programming? So what’s all this talk about mutation and state? Well, who said you can’t have state in functional programming? Functional programmers have been using the state monad since time immemorial. And mutation is not an issue if you’re using persistent data structures. So fasten your seat belts and make sure your folding trays are in the upright position.

The List Monad

We’ll start with a small refresher in quantum mechanics. As you may remember from school, quantum processes are non-deterministic. You may repeat the same experiment many times and every time get a different result. There is a very interesting view of quantum mechanics called the many-worlds interpretation, in which every experiment gives rise to multiple alternate histories. So if the spin of an electron may be measured as either up or down, there will be one universe in which it’s up, and one in which it’s down.

Selections

We’ll use the same approach to solving our puzzle. We’ll create an alternate universe for each digit substitution for a given letter. So we’ll start with 10 universes for the letter s; then we’ll split each of them into ten universes for the letter e, and so on. Of course, most of these universes won’t yield the desired result, so we’ll have to destroy them. I know, it seems kind of wasteful, but in functional programming it’s easy come, easy go. The creation of a new universe is relatively cheap. That’s because new universes are not that different from their parent universes, and they can share almost all of their data. That’s the idea behind persistent data structures. These are the immutable data structures that are “mutated” by cloning. A cloned data structure shares most of its implementation with the parent, except for a small delta. We’ll be using persistent lists described in my earlier post.

Once you internalize the many-worlds approach to programming, the implementation is pretty straightforward. First, we need functions that generate new worlds. Since we are cheap, we’ll only generate the parts that are different. So what’s the difference between all the worlds that we get when selecting the substitution for the letter s? Just the number that we assign to s. There are ten worlds corresponding to the ten possible digits (we’ll deal with the constraints like s being different from zero later). So all we need is a function that generates a list of ten digits. These are our ten universes in a nutshell. They share everything else.

Once you are in an alternate universe, you have to continue with your life. In functional programming, the rest of your life is just a function called a continuation. I know it sounds like a horrible simplification. All your actions, emotions, and hopes reduced to just one function. Well, maybe the continuation just describes one aspect of your life, the computational part, and you can still hold on to our emotions.

So what do our lives look like, and what do they produce? The input is the universe we’re in, in particular the one number that was picked for us. But since we live in a quantum universe, the outcome is a multitude of universes. So a continuation takes a number, and produces a list. It doesn’t have to be a list of numbers, just a list of whatever characterizes the differences between alternate universes. In particular, it could be a list of different solutions to our puzzle — triples of numbers corresponding to “send”, “more”, and “money”. (There is actually only one solution, but that’s beside the point.)

And what’s the very essence of this new approach? It’s the binding of the selection of the universes to the continuation. That’s where the action is. This binding, again, can be expressed as a function. It’s a function that takes a list of universes and a continuation that produces a list of universes. It returns an even bigger list of universes. We’ll call this function for_each, and we’ll make it as generic as possible. We won’t assume anything about the type of the universes that are passed in, or the type of the universes that the continuation k produces. We’ll also make the type of the continuation a template parameter and extract the return type from it using auto and decltype:

template<class A, class F>
auto for_each(List<A> lst, F k) -> decltype(k(lst.front()))
{
    using B = decltype(k(lst.front()).front());
    // This should really be expressed using concepts
    static_assert(std::is_convertible<
        F, std::function<List<B>(A)>>::value,
        "for_each requires a function type List<B>(A)");

    List<List<B>> lstLst = fmap(k, lst);
    return concatAll(lstLst);
}

The function fmap is similar to std::transform. It applies the continuation k to every element of the list lst. Because k itself produces a list, the result is a list of lists, lstLst. The function concatAll concatenates all those lists into one big list.

Congratulations! You have just seen a monad. This one is called the list monad and it’s used to model non-deterministic processes. The monad is actually defined by two functions. One of them is for_each, and here’s the other one:

template<class A>
List<A> yield(A a)
{
    return List<A> (a);
}

It’s a function that returns a singleton list. We use yield when we are done multiplying universes and we just want to return a single value. We use it to create a single-valued continuation. It represents the lonesome boring life, devoid of any choices.

I will later rename these functions to mbind and mreturn, because they are part of any monad, not just the list monad.

The names like for_each or yield have a very imperative ring to them. That’s because, in functional programming, monadic code plays a role similar to imperative code. But neither for_each nor yield are control structures — they are functions. In particular for_each, which sounds and works like a loop, is just a higher order function; and so is fmap, which is used in its implementation. Of course, at some level the code becomes imperative — fmap can either be implemented recursively or using an actual loop — but the top levels are just declarations of functions. Hence, declarative programming.

There is a slight difference between a loop and a function on lists like for_each: for_each takes a whole list as an argument, while a loop might generate individual items — in this case integers — on the fly. This is not a problem in a lazy functional language like Haskell, where a list is evaluated on demand. The same behavior may be implemented in C++ using streams or lazy ranges. I won’t use it here, since the lists we are dealing with are short, but you can read more about it in my earlier post Getting Lazy with C++.

We are not ready yet to implement the solution to our puzzle, but I’d like to give you a glimpse of what it looks like. For now, think of StateL as just a list. See if it starts making sense (I grayed out the usual C++ noise):

StateL<tuple<int, int, int>> solve()
{
    StateL<int> sel = &select<int>;

    return for_each(sel, [=](int s) {
    return for_each(sel, [=](int e) {
    return for_each(sel, [=](int n) {
    return for_each(sel, [=](int d) {
    return for_each(sel, [=](int m) {
    return for_each(sel, [=](int o) {
    return for_each(sel, [=](int r) {
    return for_each(sel, [=](int y) {
        return yield_if(s != 0 && m != 0, [=]() {
            int send  = asNumber(vector{s, e, n, d});
            int more  = asNumber(vector{m, o, r, e});
            int money = asNumber(vector{m, o, n, e, y});
            return yield_if(send + more == money, [=]() {
                return yield(make_tuple(send, more, money));
            });
        });
    });});});});});});});});
}

The first for_each takes a selection of integers, sel, (never mind how we deal with uniqueness); and a continuation, a lambda, that takes one integer, s, and produces a list of solutions — tuples of three integers. This continuation, in turn, calls for_each with a selection for the next letter, e, and another continuation that returns a list of solutions, and so on.

The innermost continuation is a conditional version of yield called yield_if. It checks a condition and produces a zero- or one-element list of solutions. Internally, it calls another yield_if, which calls the ultimate yield. If that final yield is called (and it might not be, if one of the previous conditions fails), it will produce a solution — a triple of numbers. If there is more than one solution, these singleton lists will get concatenated inside for_each while percolating to the top.

In the second part of this post I will come back to the problem of picking unique numbers and introduce the state monad. You can also have a peek at the code on github.

Challenges

  1. Implement for_each and yield for a vector instead of a List. Use the Standard Library transform instead of fmap.
  2. Using the list monad (or your vector monad), write a function that generates all positions on a chessboard as pairs of characters between 'a' and 'h' and numbers between 1 and 8.
  3. Implement a version of for_each (call it repeat) that takes a continuation k of the type function<List<B>()> (notice the void argument). The function repeat calls k for each element of the list lst, but it ignores the element itself.

Next Page »