Can a data race not be a bug? In the strictest sense I would say it’s always a bug. A correct program written in a high-level language should run the same way on every processor present, past, and future. But there is no proscription, or even a convention, about what a processor should (or shouldn’t) do when it encounters a race. This is usually described in higher-level language specs by the ominous phrase: “undefined behavior.” A data race could legitimately reprogram your BIOS, wipe out your disk, and stop the processor’s fan causing a multi-core meltdown.

Data race: Multiple threads accessing the same memory location without intervening synchronization, with at least one thread performing a write.

However, if your program is only designed to run on a particular family of processors, say the x86, you might allow certain types of data races for the sake of performance. And as your program matures, i.e., goes through many cycles of testing and debugging, the proportion of buggy races to benign races keeps decreasing. This becomes a real problem if you are using a data-race detection tool that cannot distinguish between the two. You get swamped by false positives.

Microsoft Research encountered and dealt with this problem when running their race detector called DataCollider on the Windows kernel (see Bibliography). Their program found 25 actual bugs, and almost an order of magnitude more benign data races. I’ll summarize their methodology and discuss their findings about benign data races.

Data Races in the Windows Kernel

The idea of the program is very simple. Put a hardware breakpoint on a shared memory access and wait for one of the threads to stumble upon it. This is a code breakpoint, which is triggered when the particular code location is executed. The x86 also supports another kind of a breakpoint, which is called a data breakpoint, triggered when the program accesses a specific memory location. So when a thread hits the code breakpoint, DataCollider installs a data breakpoint at the location the thread was just accessing. It then stalls the current thread and lets all other threads run. If any one of them hits the data breakpoint, it’s a race (as long as one of the accesses is a write). Consider this: If there was any synchronization (say, a lock acquisition was attempted) between the two accesses, the second thread would have been blocked from accessing that location. Since it wasn’t, it’s a classic data race.

Notice that this method might not catch all data races, but it doesn’t produce false positives. Except, of course, when the race is considered benign.

There are other interesting details of the algorithm. One is the choice of code locations for installing breakpoints. DataCollider first analyzes the program’s assembly code to create a pool of memory accesses. It discards all thread-local accesses and explicitly synchronized instructions (for instance, the ones with the LOCK prefix). It then randomly picks locations for breakpoints from this pool. Notice that rarely executed paths are as likely to be sampled as the frequently executed ones. This is important because data races, like fugitive criminals, often hide in less frequented places.

Pruning Benign Races

90% of data races caught by DataCollider in the Windows kernel were benign. For several reasons it’s hard to say how general this result is. First, the kernel had already been tested and debugged for some time, so many low-hanging concurrency bugs have been picked. Second, operating system kernels are highly optimized for a particular processor and might use all kinds of tricks to improve performance. Finally, kernels often use unusual synchronization strategies. Still, it’s interesting to see what shape benign data races take.

It turns out that half of all false positives came from lossy counters. There are many places where statistics are gathered: counting certain kinds of events, either for reporting or for performance enhancements. In those situations losing a few increments is of no relevance. However not all counters are lossy and, for instance, a data race in reference counting is a serious bug. DataCollider uses simple heuristic to detect lossy counters–they are the ones that are always incremented. A reference counter, on the other hand, is as often incremented as decremented.

Another benign race happens when one thread reads a particular bit in a bitfield while another thread updates another bit. A bit update is a read-modify-write (RMW) sequence: The thread reads the previous value of the bitfield, modifies one bit, and writes the whole bitfield back. Other bits are overwritten in the process too, but their new values are the same as the old values. A read from another thread of any of the the non-changed bits does not interfere with the write, at least not on the x86. Of course if yet another thread modified one of those bits, it would be a real bug, and it would be caught separately. The pruning of this type of race requires analysis of surrounding code (looking for the masking of other bits).

Windows kernel also has some special variables that are racy by design–current time is one such example. DataCollider has these locations hard-coded and automatically prunes them away.

There are benign races that are hard to prune automatically, and those are left for manual pruning (in fact, DataCollider reports all races, it just de-emphasizes the ones it considers benign). One of them is the double-checked locking pattern (DCLP), where a thread makes a non-synchronized read to be later re-confirmed under the lock. This pattern happens to work on the x86, although it definitely isn’t portable.

Finally, there is the interesting case of idempotent writes— two racing writes that happen to write the same value to the same location. Even though such scenarios are easy to prune, the implementers of DataCollider decided not to prune them because more often than not they led to the uncovering of concurrency bugs. Below is a table that summarizes various cases.

Benign race Differentiate from Pruned?
Lossy counter Reference counting Yes
Read and write of different bits Read and write of the whole word Yes
Deliberately racy variables Yes
Idempotent writes No


In the ideal world there would be no data races. But a concurrency bug detector must take into account the existence of benign data races. In the early stages of product testing the majority of detected races are real bugs. It’s only when chasing the most elusive of concurrency bugs that it becomes important to weed out benign races. But it’s the elusive ones that bite the hardest.


  1. John Erickson, Madanlal Musuvathi, Sebastian Burckhardt, Kirk Olynyk, Effective Data-Race Detection for the Kernel

C++ is like an oil tanker — it takes a long time for it to change course. The turbulent reefs towards which C++ has been heading were spotted on the horizon more than ten years ago. I’m talking, of course, about the end of smooth sailing under the Moore’s law and the arrival of the Multicore. It took six years to acknowledge the existence of concurrency in the C++11 Standard, but that’s only the beginning. It’s becoming more and more obvious that a major paradigm shift is needed if C++ is to remain relevant in the new era.

Why do we need a new paradigm to deal with concurrency? Can’t we use object oriented programming with small modifications? The answer to this question goes to the heart of programming: it’s about composability. We humans solve complex problems by splitting them into smaller subproblems. This is a recursive process, we split subproblems into still smaller pieces, and so on. Eventually we reach the size of the problem which can be easily translated into computer code. We then have to compose all these partial solutions into larger programs.

The key to composability is being able to hide complexity at each level. This is why object oriented programming has been so successful. When you’re implementing an object, you have to deal with its internals, with state transitions, intermediate states, etc. But once the object is implemented, all you see is the interface. The interface must be simpler than the implementation for object oriented programming to make sense. You compose larger objects from smaller objects based on their interfaces, not the details of their implementation. That’s how object oriented programming solves the problem of complexity.

Unfortunately, objects don’t compose in the presence of concurrency. They hide the wrong kind of things. They hide sharing and mutation. Let me quote the definition of data race: Two or more threads accessing the same piece of memory at the same time, at least one of them writing. In other words: Sharing + Mutation = Data Race. Nothing in the object’s interface informs you about the possibility of sharing and mutation inside the object’s implementation. Each object in isolation may be data-race-free but their composition may inadvertently introduce data races. And you won’t know about it unless you study the details of their implementation down to every single memory access.

In Java, an attempt had been made to mollify this problem: Every object is equipped with a mutex that can be invoked by declaring the method synchronized. This is not a scalable solution. Even Java’s clever thin lock implementation incurs non-negligible performance overhead, so it is used only when the programmer is well aware of potential races, which requires deep insight into the implementation of all subobjects, exactly the thing we are trying to avoid.

More importantly, locking itself doesn’t compose. There’s a classic example of a locked bank account whose deposit and withdraw methods are synchronized by a lock. The problem occurs when one tries to transfer money from one account to another. Without exposing the locks, it’s impossible to avoid a transient state in which the funds have already left one account but haven’t reached the second. With locks exposed, one may try to hold both locks during the transfer, but that creates a real potential for deadlocks. (Software Transactional Memory provides a composable solution to this problem, but there are no practical implementations of STM outside of Haskell and Clojure.)

Moreover, if we are interested in taking advantage of multicores to improve performance, the use of locks is a non-starter. Eking out parallel performance is hard enough without locks, given all the overheads of thread management and the Amdahl’s law. Parallelism requires a drastically different approach.

Since the central problem of concurrency is the conflict between sharing and mutation, the solution is to control these two aspects of programming. We can do mutation to our heart’s content as long as there’s no sharing. For instance, we can mutate local variables; or we can ensure unique ownership by making deep copies, using move semantics, or by employing unique_ptrs. Unique ownership plays very important role in message passing, allowing large amounts of data to be passed cheaply between threads.

However, the key to multicore programming is controlling mutation. This is why functional languages have been steadily gaining ground in concurrency and parallelism. In a nutshell, functional programmers have found a way to program using what, to all intents and purposes, looks like immutable data. An imperative programmer, when faced with immutability, is as confused as a barbecue cook in a vegetarian kitchen. And the truth is that virtually all data structures from the C++ standard library are unsuitable for this kind of programming — the standard vector being the worst offender. A continuous slab of memory is perfect for random or sequential access, but the moment mutation is involved, you can’t share it between threads. Of course, you can use a mutex to lock the whole vector every time you access it, but as I explained already, you can forget about performance and composability of such a solution.

The trick with functional data structures is that they appear immutable, and therefore require no synchronization when accessed from multiple threads. Mutation is replaced by construction: you construct a new object that’s a clone of the source object but with the requested modification in place. Obviously, if you tried to do this with a vector, you’d end up with a lot of copying. But functional data structures are designed for maximum sharing of representation. So a clone of a functional object will share most of its data with the original, and only record a small delta. The sharing is totally transparent since the originals are guaranteed to be immutable.

A singly-linked list is a classical, if not somewhat trivial, example of such a data structure. Adding an element to the front of a list requires only the creation of a single node to store the new value and a pointer to the original (immutable) list. There are also many tree-like data structures that are logarithmically cheap to clone-mutate (red-black trees, leftist heaps). Parallel algorithms are easy to implement with functional data structures, since the programmer doesn’t have to worry about synchronization.

Functional data structures, also known as “persistent” data structures, are naturally composable. This follows from the composability of immutable data — you can build larger immutable objects from smaller immutable objects. But there’s more to it: This new way of mutating by construction also composes well. A composite persistent object can be clone-mutated by clone-mutating only the objects on the path to the mutation; everything else can be safely shared.

Concurrency also introduces nonstandard flows of control. In general, things don’t progress sequentially. Programmers have to deal with inversion of control, jumping from handler to handler, keeping track of shared mutable state, etc. Again, in functional programming this is nothing unusual. Functions are first class citizens and they can be composed in many ways. A handler is nothing but a continuation in the continuation passing style. Continuations do compose, albeit in ways that are not familiar to imperative programmers. Functional programmers have a powerful compositional tool called a monad that, among other things, can linearize inverted flow of control. The design of libraries for concurrent programming makes much more sense once you understand that.

A paradigm shift towards functional programming is unavoidable and I’m glad to report that there’s a growing awareness of that new trend among C++ programmers. I used to be the odd guy talking about Haskell and monads at C++ meetings and conferences. This is no longer so. There was a sea change at this year’s C++Now. The cool kids were all talking about functional programming, and the presentation “Functional Data Structures in C++” earned me the most inspiring session award. I take it as a sign that the C++ community is ready for a big change.

[If you prefer, you may watch the video of my talk on this topic (here are the slides).]

If you thought you were safe from functional programming in your cozy C++ niche, think again! First the lambdas and function objects and now the monad camouflaged as std::future. But do not despair, it’s all just patterns. You won’t find them in the Gang of Four book, but once you see them, they will become obvious.

Let me give you some background: I was very disappointed with the design of C++11 std::future. I described my misgivings in: Broken Promises — C++0x futures. I also made a few suggestions as how to fix it: Futures Done Right. Five years went by and, lo and behold, a proposal to improve std::future and related API, N3721, was presented to the Standards Committee for discussion. I thought it would be a no brainer, since the proposal was fixing obvious holes in the original design. A week ago I attended the meetings of the C++ Standards Committee in Issaquah — since it was within driving distance from me — and was I in for a surprise! Apparently some design patterns that form the foundation of functional programming are not obvious to everybody. So now I find myself on the other side of the discussion and will try to explain why the improved design of std::future is right.

Design arguments are not easy. You can’t mathematically prove that one design is better than another, or a certain set of abstractions is better than another — unless you discover some obvious design flaws in one of them. You might have a gut feeling that a particular solution is elegant, but how do you argue about elegance?

Thankfully, when designing a library, there are some well known and accepted criteria. The most important ones, in my mind, are orthogonality, a.k.a., separation of concerns, and composability. It also helps if the solution has been previously implemented and tested, especially in more than one language. I will argue that this is indeed the case with the extended std::future design. In the process, I will describe some programming patterns that might be new to C++ programmers but have been tried and tested in functional languages. They tend to pop up more and more in imperative languages, especially in connection with concurrency and parallelism.

The Problem

In a nutshell, the problem that std::future is trying to solve is that of returning the result of a computation that’s being performed in parallel, or returning the result of an asynchronous call. For instance, you start a computation in a separate thread (or a more general execution agent) and you want to, at some point in time, get back the result of that computation. This is one of the simplest models of concurrency: delegating the execution of a function (a closure) to another thread.

To return a value from one thread to another you need some kind of a communication channel. One thread puts a value in the channel, another picks it up. Instead of providing one channel abstraction, as does ML or Haskell, C++11 splits it into two separate abstractions: the promise and the future. The promise is the push end of the channel, the future is the pull end. (In Rust there are similar objects called Chan and Port.)

The general pattern is for the client to construct a promise, get the future from it using get_future, and start a thread, passing it the promise. When the thread is done, it puts the result in the promise using set_value. In the meanwhile, the calling thread may do some other work and eventually decide to retrieve the result from the future by calling its method get. If the promise has been fulfilled, get returns immediately with the value, otherwise it blocks until the value is available.

This pattern involves some boilerplate code dealing with the promise side of things, so the Standard introduced a shortcut called std::async to simplify it. You call std::async with a plain function (closure) and its result is automatically put into a hidden promise. All the client sees is the future side of the channel. (I am simplifying things by ignoring exception handling and various modes of starting async.)

The Functor Pattern

Here’s the first abstraction: A future is an object that encapsulates a value. By itself, this would be a pretty useless abstraction unless the encapsulation came with some other functionality or restriction. For instance, std::unique_ptr encapsulates a value, but also manages the lifetime of the memory it occupies. A future encapsulates a value, but you might have to block to get it. Functional languages have a very useful pattern for just this kind of situation: the functor pattern (not to be confused with the C++ misnomer for a function object). A functor encapsulates a value of an arbitrary type, plus it lets you act on it with a function.

Notice that the functor doesn’t necessarily give you access to the value — instead it lets you modify it. The beauty of it is that, in the case of a future, a functor gives you the means to modify the value that potentially isn’t there yet — and it lets you do it without blocking. Of course, behind the scenes, the function (closure) that you provide is stored in the future and only applied when the value is ready and is being accessed using get.

The first part of the fix that was proposed to the Committee was to turn std::future into a functor. Technically, this is done by adding a new method, then:

template<typename F>
auto future::then(F&& func) -> future<decltype(func(*this))>;

This method takes a function object func to be applied to the future in question. The result is a new future of the type that is returned by the function object, decltype(func(*this)).

Things are slightly muddled by the fact that a future not only encapsulates the value to be calculated but also the possibility of an exception. This is why the function passed to then takes the whole future, from which it can extract the value using get, which at that point is guaranteed not to block, but may rethrow an exception. There is an additional proposal N3865 to introduce another method, next, that would deal only with the value, not the exception. The advantage of next is that it could be called with a regular function unaware of the existence of futures, with no additional boilerplate. For simplicity, I’ll be using next in what follows.

The functor pattern makes perfect sense for composing a regular function on top of an asynchronous function (one returning a future), but it’s more general than that. Any time you have an object that is parameterized by an arbitrary type, you might be dealing with a functor. In C++, that would be a template class that doesn’t impose any restrictions on its template argument. Most containers have this property. In order for a generic class to be a functor it must also support a means to operate on its contents. Most containers in STL provide this functionality through the algorithm std::transform. For an imperative programmer it might come as a surprise that such disparate things as futures and containers fall under the same functional pattern — a functor.

Unlike in functional languages, in C++ there is no natural reusable expression for the functor pattern, so it’s more of the pattern in the head of the programmer. For instance, because of memory management considerations, std::transform operates on iterators rather than containers — the storage for the target container must be either pre-allocated or allocated on demand through iterator adapters. One could try to provide iterator adapters for futures, so they could be operated on by std::transform, but ultimately the transformation has to act on the internals of the future (i.e., store the function object in it) so it either has to be a method or a friend of the future.

The Monad Pattern

The functor pattern is not enough to provide full composability for futures. The likely scenario is that the user creates a library of future-returning functions, each performing a specific task. He or she then needs the means to combine such functions into more complex tasks. This is, for instance, the case when combining asynchronous operations, such as opening a file and then reading from it. Suppose we have the async_open function that returns a file handle future:

future<HANDLE> async_open(string &);

and the async_read function that takes a file handle and returns a future with the buffer filled with data:

future<Buffer> async_read(HANDLE fh);

If you combine the two using next, the result will be a future of a future:

future<future<Buffer>> ffBuf = async_open("foo").next(&async_read);

In order to continue chaining such calls without blocking — for instance to asynchronously process the buffer — you need a way to collapse the double future to a single future and then call next on it.

The collapsing method, unwrap, is another part of the extended future proposal. When called on a future<future<T>> it returns future<T>. It lets you chain asynchronous functions using next followed by unwrap.


In functional programming such a collapsing function is called join. The combination next followed by unwrap (or, in Haskell, fmap followed by join) is so common that it has its own name, bind (in Haskell it’s the operator >>=). It might make sense to make bind another method of future (possibly under a different name). [Edit: In fact, the proposal (n3721) is to overload then to automatically perform unwrap whenever the result is a future of a future. This way then would also work as bind.]

There’s one more important usage pattern: a function that may execute asynchronously, but sometimes returns the result immediately. This often happens in recursive algorithms, when the recursion bottoms up. For instance, a parallel tree traversal function may spawn asynchronous tasks for traversing the children of a node, but when it reaches a leaf, it might want to return the result synchronously. Instead of writing complicated conditional code at each level, it’s easier to provide a “fake” future whose contents is immediately available — whose get method never blocks. Such fake future and the function that creates it called make_ready_future are also part of the proposal.

Together, the methods next (or then) and unwrap, and the function make_ready_future are easily recognizable by a functional programmer as forming the monad pattern (in Haskell, they would be called, respectively, fmap, join, and return). It’s a very general pattern for composing functions that return encapsulated values. Using a monad you may work with such functions directly, rather than unwrapping their results at every step. In the case of futures, this is an important issue, since the “unwrapping” means making a potentially blocking call to get and losing precious opportunities for parallelism. You want to set up as much computation up front and let the system schedule the most advantageous execution.

Combining functions using next, unwrap (or, equivalently, bind), and make_ready_future is equivalent to specifying data dependencies between computations and letting the runtime explore opportunities for parallelism between independent computations.

The Applicative Pattern

The combinators then and next are designed for linear composition: the output of one computation serves as the input for another. A more general pattern requires the combining of multiple asynchronous sources of data. In functional programming the problem would be described as applying a function to multiple arguments, hence the name “applicative” pattern. A functional programmer would take a multi-argument function and “lift” it to accept futures instead of immediate values.

As expected, in imperative programming things are a little messier. You have to create a barrier for all the input futures, retrieve the values, and then pass them to the multi-argument function or algorithm. The proposal contains a function called when_all that implements the first part of the process — the barrier. It takes either a pair of iterators to a container of futures or a variable number of futures, and returns a future that fires when all the arguments are ready. Conceptually, it performs a logical AND of all input futures.

The iterator version of when_all returns a future of a vector of futures, while the variadic version returns a future of a tuple of futures. It’s up to the client to get the resulting vector or tuple and iterate over it. Because of that, it’s not possible to directly chain the results of when_all the way then or next does it.

If you’re wondering how this kind of chaining is done in a functional language, you have to understand what partial application is. A function of many arguments doesn’t have to be applied to all of the arguments at once. You can imagine that applying it to the first argument doesn’t yield a value but rather a function on n-1 arguments. In C++11, this can be accomplished by calling std::bind, which takes a multi-parameter function and a value of the first argument, and returns a function object (a closure) that takes the remaining n-1 arguments (actually, you may pass it more than one argument at a time).

In this spirit, you could bind a multi-parameter function to a single future and get a future of a function of n-1 arguments. Then you are left with the problem of applying a future of a function to a future of an argument, and that’s exactly what the applicative pattern is all about. In Haskell, the Applicative class defines the operator <*> that applies an encapsulated function to an encapsulated value.

The Monoid Pattern

A very common pattern is to start several computations in parallel and pick the one that finishes first. This is the basis of speculative computation, where you pitch several algorithms against each other. Or you might be waiting for any of a number of asynchronous events, and attend to them as soon as they happen.

At a minimum you would expect a combinator that acts like a logical OR of two futures. A functional programmer would be immediately on the lookout for the monoid pattern. A monoid is equipped with a binary operation and a unit element. If the binary operation on futures picks the one that finishes first, what should the unit future be? A unit combined with any element must give back that same element. Therefore we need a future that would lose the race with any other future. We could call this special future “never.” Calling get on such a future would block forever.

In practice, one could slightly relax the definition of the “never” future. It would never return a result, but it could still throw an exception. A future like this could be used to implement a timeout. Pitching it against another future would either let the other future complete, or result in a timeout exception.

This is not the way the future extension proposal went, though. The proposed combinator is called when_any and it takes either a pair of iterators to a container of futures or a variable number of futures. It returns a future of either a vector or a tuple of futures. It’s up to the client to iterate over those futures and find the one (or the ones) that fired by calling is_ready on each of them.

The advantage of this approach is that the client may still write code to wait for the remaining futures to finish. The disadvantage is that the client is responsible for writing a lot of boilerplate code, which will obscure the program logic.

Performance and Programming Considerations

An objection to using futures as the main vehicle for asynchronous programming was raised in N3896: Library Foundations for Asynchronous Operations. The point it that it’s possible for an asynchronous API to have a result ready before the client had the opportunity to provide the continuation by calling then (or next). This results in unnecessary synchronization, which may negatively impact performance.

The alternative approach is to pass the continuation (the handler) directly to the asynchronous API. This is how a lot of asynchronous APIs are implemented at the lowest level anyway. The two approaches don’t exclude each other, but supporting both at the same time, as proposed in N3896, adds a lot of complexity to the programming model.

From the programmer’s perspective, the continuation passing model of N3896 is probably the hardest to use. The programming model is that of a state machine, with the client responsible for writing handlers for every transition.

Futures provide a useful abstraction by reifying the anticipated values. The programmer can write code as if the values were there. Futures also provide a common language between concurrent, parallel, and asynchronous worlds. It doesn’t matter if a value is to be evaluated by spawning a thread, creating a lightweight execution agent, or by calling an asynchronous API, as long as it’s encapsulated in a future. The compositional and expressional power of futures is well founded in major patterns of functional programming: the functor, the monad, the applicative, and the monoid.

There is another, even more attractive programming model that’s been proposed for C++, Resumable Functions, which makes asynchronous code look more like sequential code. This is based on a trick that’s well known to Haskell programmers in the form of the “do” notation. In C++, a resumable function would be chopped by the compiler into a series of continuations separated by await keywords. Instead of creating a future and calling then with a lambda function, the programmer would insert await and continue writing code as if the value were available synchronously.


I’d like to thank Artur Laksberg for reading the draft of this blog and providing useful feedback.

Persistent trees are more interesting than persistent lists, which were the topic of my previous blog. In this installment I will concentrate on binary search trees. Such trees store values that can be compared to each other (they support total ordering). Such trees may be used to implement sets, multisets, or associated arrays. Here I will focus on the simplest of those, the set — the others are an easy extensions of the same scheme.

A set must support insertion, and membership test (I’ll leave deletion as an exercise). These operations should be doable, on average, in logarithmic time, O(log(N)). Only balanced trees, however, can guarantee logarithmic time even in the worst case. A simple tree may sometimes degenerate to a singly-linked list, with performance dropping to O(N). I will start with a simple persistent tree and then proceed with a balanced red-black tree.

Persistent Binary Search Tree

As with lists, we will start with an abstract definition:

A tree is either empty or contains a left tree, a value, and a right tree.

This definition translates into a data structure with two constructors:

template<class T>
class Tree {
    Tree(); // empty tree
    Tree(Tree const & lft, T val, Tree const & rgt)

Just as we did with persistent lists, we’ll encode the empty/non-empty tree using null/non-null (shared) pointer to a node. A Node represents a non-empty tree:

   struct Node
       Node(std::shared_ptr<const Node> const & lft
          , T val
          , std::shared_ptr<const Node> const & rgt)
       : _lft(lft), _val(val), _rgt(rgt)

       std::shared_ptr<const Node> _lft;
       T _val;
       std::shared_ptr<const Node> _rgt;

Here’s the complete construction/deconstruction part of the tree. Notice how similar it is to the list from my previous post. All these methods are const O(1) time, as expected. As before, the trick is to construct a new object (Tree) from big immutable chunks (lft and rgt), which can be safely put inside shared pointers without the need for deep copying.

template<class T>
class Tree
    struct Node;
    explicit Tree(std::shared_ptr<const Node> const & node) 
    : _root(node) {} 
    Tree() {}
    Tree(Tree const & lft, T val, Tree const & rgt)
      : _root(std::make_shared<const Node>(lft._root, val, rgt._root))
        assert(lft.isEmpty() || lft.root() < val);
        assert(rgt.isEmpty() || val < rgt.root());       
    bool isEmpty() const { return !_root; }
    T root() const {
        return _root->_val;
    Tree left() const {
        return Tree(_root->_lft);
    Tree right() const {
        return Tree(_root->_rgt);
    std::shared_ptr<const Node> _root;


The persistent nature of the tree manifests itself in the implementation of insert. Instead of modifying the existing tree, insert creates a new tree with the new element inserted in the right place. The implementation is recursive, so imagine that you are at a subtree of a larger tree. This subtree might be empty. Inserting an element into an empty tree means creating a single-node tree with the value being inserted, x, and two empty children.

On the other hand, if you’re not in an empty tree, you can retrieve the root value y and compare it with x. If x is less then y, it has to be inserted into the left child. If it’s greater, it must go into the right child. In both cases we make recursive calls to insert. If x is neither less nor greater than y, we assume it’s equal (that’s why we need total order) and ignore it. Remember, we are implementing a set, which does not store duplicates.

Tree insert(T x) const {
    if (isEmpty())
        return Tree(Tree(), x, Tree());
    T y = root();
    if (x < y)
        return Tree(left().insert(x), y, right());
    else if (y < x)
        return Tree(left(), y, right().insert(x));
        return *this; // no duplicates

Now consider how many new nodes are created during an insertion. A new node is only created in the constructor of a tree (in the code: std::make_shared<const Node>(lft._root, val, rgt._root)). The left and right children are not copied, they are stored by reference. At every level of insert, a tree constructor is called at most once. So in the worst case, when we recurse all the way to the leaves of the tree, we only create h nodes, where h is the height of the tree. If the tree is not too much out of balance its height scales like a logarithm of the number of nodes. To give you some perspective, if you store a billion values in a tree, an insertion will cost you 30 copies on average. If you need a logarithmic bound on the worst case, you’d have to use balanced trees (see later).

If you study the algorithm more closely, you’ll notice that only the nodes that are on the path from the root to the point of insertion are modified.

Testing for membership in a persistent tree is no different than in a non-persistent one. Here’s the recursive algorithm:

bool member(T x) const {
    if (isEmpty())
        return false;
    T y = root();
    if (x < y)
        return left().member(x);
    else if (y < x)
        return right().member(x);
        return true;

When using C++11, you might take advantage of the initializer list constructor to initialize a tree in one big swoop like this:

Tree t{ 50, 40, 30, 10, 20, 30, 100, 0, 45, 55, 25, 15 };


Here’s the implementation of such constructor, which works in O(N*log(N)) average time (notice that it effectively sorts the elements, and O(N*log(N)) is the expected asymptotic behavior for sort):

Tree(std::initializer_list<T> init) {
    Tree t;
    for (T v: init) {
        t = t.insert(v);
    _root = t._root;

Persistent Red-Black Tree

If you want to keep your tree reasonably balanced — that is guarantee that its height is on the order of log(N) — you must do some rebalancing after inserts (or deletes). Care has to be taken to make sure that rebalancing doesn’t change the logarithmic behavior of those operations. The balance is often expressed using some invariants. You can’t just require that every path from root to leaf be of equal length, because that would constrain the number of elements to be always a power of two. So you must give it some slack.

In the case of a red-black tree, the invariants are formulated in terms of colors. Every node in the tree is marked as either red or black. These are the two invariants that have to be preserved by every operation:

  1. Red invariant: No red node can have a red child
  2. Black invariant: Every path from root to an empty leaf node must contain the same number of black nodes — the black height of the tree.

This way, if the shortest path in a tree is all black, the longest path could only be twice as long, containing one red node between each pair of black nodes. The height of such a tree could only vary between (all black) log(N) and (maximum red) 2*log(N).

With these constraints in mind, the re-balancing can be done in log(N) time by localizing the modifications to the nearest vicinity of the path from the root to the point of insertion or deletion.

Let’s start with basic definitions. The node of the tree will now store its color:

enum Color { R, B };

Otherwise, it’s the same as before:

    struct Node
        Node(Color c, 
            std::shared_ptr const & lft, 
            T val, 
            std::shared_ptr const & rgt)
            : _c(c), _lft(lft), _val(val), _rgt(rgt)
        Color _c;
        std::shared_ptr _lft;
        T _val;
        std::shared_ptr _rgt;

An empty tree will be considered black by convention.

The membership test ignores colors so we don’t have to re-implement it. In fact the search performance of a persistent RB Tree is exactly the same as that of an imperative RB Tree. You pay no penalty for persistence in search.

With insertion, you pay the penalty of having to copy the path from root to the insertion point, which doesn’t change its O(log(N)) asymptotic behavior. As I explained before, what you get in exchange is immutability of every copy of your data structure.

The Balancing

Let’s have a look at the previous version of insert and figure out how to modify it so the result preserves the RB Tree invariants.

Tree insert(T x) const {
    if (isEmpty())
        return Tree(Tree(), x, Tree());
    T y = root();
    if (x < y)
        return Tree(left().insert(x), y, right());
    else if (y < x)
        return Tree(left(), y, right().insert(x));
        return *this; // no duplicates

Let’s first consider the most difficult scenario: the insertion into a maximum capacity tree for a given black height. Such a tree has alternating levels of all black and all red nodes. The only way to increase its capacity is to increase its black height. The cheapest way to add one more black level to all paths (thus preserving the black invariant) is to do it at the root (for instance, lengthening all the path at the leaves would require O(N) red-to-black re-paintings).

So here’s the plan: We’ll insert a new node at the leaf level and make it red. This won’t break the black invariant, but may break the red invariant (if the parent node was red). We’ll then retrace our steps back to the root, percolating any red violation up. Then, at the top level, we’ll paint the resulting root black, thus killing two birds with one stone: If we ended up with a red violation at the top, this will fix it and, at the same time, increase the black height of the whole tree.

It’s important that during percolation we never break the black invariant.

So here’s how we execute this plan: insert will call the recursive insertion/re-balancing method ins, which might return a red-topped tree. We’ll paint that root black (if it’s already black, it won’t change anything) and return it to the caller:

RBTree insert(T x) const {
    RBTree t = ins(x);
    return RBTree(B, t.left(), t.root(), t.right());

In the implementation of ins, the first case deals with an empty tree. This situation happens when it’s the first insertion into an empty tree or when, during the recursive process, we’ve reached the insertion point at the bottom of the tree. We create a red node and return it to the caller:

if (isEmpty())
  return RBTree(R, RBTree(), x, RBTree());

Notice that, if this new node was inserted below another red node, we are creating a red violation. If that node was the root of the whole tree, insert will repaint it immediately. If it weren’t, and we pop one level up from recursion, we’ll see that violation. We can’t fix it at that point — for that we’ll have to pop one more level, up to the black parent, where we have more nodes to work with.

Here are the details of ins: We’ll follow the same logic as in the non-balanced tree, thus preserving the ordering of values; but instead of reconstructing the result tree on the spot we’ll call a function balance, which will do that for us in a semi-balanced way (that is, with a possibility of a red violation, but only at the very top).

RBTree ins(T x) const
    if (isEmpty())
        return RBTree(R, RBTree(), x, RBTree());
    T y = root();
    Color c = rootColor();
    if (x < y)
        return balance(c, left().ins(x), y, right());
    else if (y < x)
        return balance(c, left(), y, right().ins(x));
        return *this; // no duplicates

Just like the constructor of the red-black tree, balance takes the following arguments: color, left subtree, value, and right subtree. Depending on the result of the comparison, the new element is inserted either into the left or the right subtree.

As I explained, balance, and consequently ins, cannot fix the red violation when they are sitting on it. All they can do is to make sure that the violation is at the very top of the tree they return. So when we call balance with the result of ins, as in:

balance(c, left().ins(x), y, right())


balance(c, left(), y, right().ins(x))

the left or the right subtree, respectively, may be semi-balanced. This is fine because balance can then rotate this violation away.

So the interesting cases for balance are the ones that rebuild a black node with either the left or the right subtree having a red violation at the top.

There are four possible cases depending on the position of the violation. In each case we can rearrange the nodes in such a way that the violation disappears and the ordering is preserved. In the pictures below I have numbered the nodes and subtrees according to the order of the values stored in them. Remember that all values in the left subtree are less than the value stored in the node, which in turn is less than all the values in the right subtree.

Fig 1

Rotating lft.doubledLeft()

Fig 1

Rotating lft.doubledRight()()

Fig 1

Rotating rgt.doubledLeft()

Fig 1

Rotating rgt.doubledRight()()

Each rotation creates a tree that preserves both invariants. Notice, however, that the result of the rotation is always red-tipped, even though we were rebuilding a node that was originally black. So if the parent of that node was red, our caller will produce a red violation (it will call balance with red color as its argument, which will fall through to the default case). This violation will be then dealt with at the parent’s parent level.

static RBTree balance(Color c
                    , RBTree const & lft
                    , T x
                    , RBTree const & rgt)
   if (c == B && lft.doubledLeft())
        return RBTree(R
                    , lft.left().paint(B)
                    , lft.root()
                    , RBTree(B, lft.right(), x, rgt));
    else if (c == B && lft.doubledRight())
        return RBTree(R
                    , RBTree(B, lft.left(), lft.root(), lft.right().left())
                    , lft.right().root()
                    , RBTree(B, lft.right().right(), x, rgt));
    else if (c == B && rgt.doubledLeft())
        return RBTree(R
                    , RBTree(B, lft, x, rgt.left().left())
                    , rgt.left().root()
                    , RBTree(B, rgt.left().right(), rgt.root(), rgt.right()));
    else if (c == B && rgt.doubledRight())
        return RBTree(R
                    , RBTree(B, lft, x, rgt.left())
                    , rgt.root()
                    , rgt.right().paint(B));
        return RBTree(c, lft, x, rgt);

For completeness, here are the auxiliary methods used in the implementation of balance:

bool doubledLeft() const {
    return !isEmpty()
        && rootColor() == R
        && !left().isEmpty()
        && left().rootColor() == R;
bool doubledRight() const {
    return !isEmpty()
        && rootColor() == R
        && !right().isEmpty()
        && right().rootColor() == R;
RBTree paint(Color c) const {
    return RBTree(c, left(), root(), right());


Our implementation of the persistent red-black tree follows the Chris Okasaki’s book. As Chris asserts, this is one of the fastest implementations there is, and he offers hints to make it even faster. Of course there are many imperative implementations of red-black trees, including STL’s std::set and std::map. Persistent RB-trees match their performance perfectly when it comes to searching. Insertion and deletion, which are O(log(N)) for either implementation, are slower by a constant factor because of the need to copy the path from root to leaf. On the other hand, the persistent implementation is thread-safe and synchronization-free (except for reference counting in shared_ptr — see discussion in my previous blog).

Complete code is available at GitHub.


I’d like to thank Eric Niebler for reading the draft and telling me which of my explanations were more abstruse than usual.

Haskell Code

For comparison, here’s the original Haskell code. You can see that the C++ implementation preserves its structure pretty well. With proper optimization tricks (unboxing and eager evaluation) the Haskell code should perform as well as its C++ translation.

Regular (unbalanced) binary search tree:

data Tree a = Empty | Node (Tree a) a (Tree a)

member x Empty = False
member x (Node lft y rgt) =
    if x < y then member x lft
    else if y < x then member x rgt
    else True

insert x Empty = Node Empty x Empty
insert x t@(Node lft y rgt) =
    if x < y then Node (insert x lft) y rgt
    else if y < x then Node lft y (insert x rgt)
    else t

Balanced Red-Black tree:

data Color = R | B

data Tree a = Empty | Node Color (Tree a) a (Tree a)

member x Empty = False
member x (Node _ lft y rgt) =
    if x < y then member x lft
    else if y < x then member x rgt
    else True

insert x tree = Node B left val right
      ins Empty = Node R Empty x Empty
      ins t@(Node c lft y rgt) =
          if (x < y) then balance c (ins lft) y rgt
          else if (y < x) then balance c lft y (ins rgt)
          else t
      Node _ left val right = ins tree -- pattern match result of ins

balance B (Node R (Node R a x b) y c) z d = 
    Node R (Node B a x b) y (Node B c z d)
balance B (Node R a x (Node R b y c)) z d = 
    Node R (Node B a x b) y (Node B c z d)
balance B a x (Node R (Node R b y c) z d) = 
    Node R (Node B a x b) y (Node B c z d)
balance B a x (Node R b y (Node R c z d)) = 
    Node R (Node B a x b) y (Node B c z d)
balance color a x b = Node color a x b

I’ve been looking for a good analogy of what programming in C++ feels like and I remembered this 1990 Tim Burton movie, Edward Scissorhands.

It’s a darker version of Pinocchio, shot in suburban settings. In this poster, the scary guy (Johnny Depp) is trying to gently hug Winona Ryder but his clumsy scissor-hands are making it very dangerous for both of them. His face is already covered with deep scars.

Having scissors for hands in not all that bad. Edward has many talents: he can, for instance, create stunning dog hairdos.

I often have these kinds of thoughts after attending C++ conferences: this time it was Going Native 2013. The previous year, the excitement was all about the shiny new C++11 Standard. This year it was more of a reality check. Don’t get me wrong — there were many stunning dog hairdos on display (I mean C++ code that was elegant and simple) but the bulk of the conference was about how to avoid mutilation and how to deliver first aid in case of accidental amputation.

Little shop of horrors

There was so much talk about how not to use C++ that it occurred to me that maybe this wasn’t the problem of incompetent programmers, but that straightforward C++ is plain wrong. So if you just learn the primitives of the language and try to use them, you’re doomed.

C++ has an excuse for that: backward compatibility — in particular compatibility with C. You might think of the C subset of C++ as bona fide assembly language which you shouldn’t use it in day-to-day programming, except that it’s right there on the surface. If you reach blindly into your C++ toolbox, you’re likely to come up with naked pointers, for loops, and all this ugly stuff.

A well known example of what not to do is to use malloc to dynamically allocate memory, and free to deallocate it. malloc takes a count of bytes and returns a void pointer, which you have to cast to something more usable — it would be hard to come up with worse API for memory management. Here’s an example of really bad (but almost correct, if it weren’t for the possibility of null pointer dereference) code:

struct Pod {
    int count;
    int * counters;

int n = 10;
Pod * pod = (Pod *) malloc (sizeof Pod);
pod->count = n
pod->counters = (int *) malloc (n * sizeof(int));
free (pod->counters);
free (pod);

Hopefully, nobody writes code like this in C++, although I’m sure there are a lot of legacy apps with such constructs, so don’t laugh.

C++ “solved” the problem of redundant casting and error-prone size calculations by replacing malloc and free with new and delete. The corrected C++ version of the code above would be:

struct Pod {
    int count;
    int * counters;

int n = 10;
Pod * pod = new Pod;
pod->count = n;
pod->counters = new int [n];
delete [] pod->counters;
delete pod;

BTW, the null pointer dereference problem is solved too, because new will throw an exception when the system runs out of memory. There is still a slight chance of a memory leak if the second new fails (But how often does that happen? Hint: how big can n get?) So here’s the really correct version of the code:

class Snd { // Sophisticated New Data
    Snd (int n) : _count(n), _counters(new int [n]) {}
    ~Snd () { delete [] _counters; }
    int _count;
    int * _counters;

Snd * snd = new Snd (10);
delete snd;

Are we done yet? Of course not! The code is not exception safe.

The C++ lore is that you should avoid naked pointers, avoid arrays, avoid delete. So the remedy for the lameness of malloc is operator new, which is also broken because it returns a dangerous pointer and pointers are bad.

We all know (and have scars on our faces to prove it) that you should use the Standard Library containers and smart pointers whenever possible. Oh, and use value semantics for passing things around. No wait! Value semantics comes with a performance penalty because of excessive copying. So what about shared_ptr and vectors of shared_ptr? But that adds the overhead of reference counting! No, here’s a new idea: move semantics and rvalue references.

I can go on and on like this (and I often do!). Do you see the pattern? Every remedy breeds another remedy. It’s no longer just the C subset that should be avoided. Every new language feature or library addition comes with a new series of gotchas. And you know a new feature is badly designed if Scott Meyers has a talk about it. (His latest was about the pitfalls of, you guessed it, move semantics.)

The Philosophy of C++

Bjarne Stroustrup keeps stressing how important backward compatibility is for C++. It’s one of the pillars of the C++ philosophy. Considering how much legacy code there is, it makes perfect sense. Compatibility, though, takes a very heavy toll on the evolution of the language. If nature were as serious about backward compatibility as C++ is, humans would still have tails, gills, flippers, antennae, and external skeletons on top of internal ones — they all made sense at some point in the evolution.

C++ has become an extremely complex language. There are countless ways of doing the same thing — almost all of them either plain wrong, dangerous, unmaintainable, or all of the above. The problem is that most code compiles and even runs. The mistakes and shortcomings are discovered much later, often after the product has been released.

You might say: Well, that’s the nature of programming. If you think so, you should seriously look at Haskell. Your first reaction will be: I don’t know how to implement the first thing (other than the factorial and Fibonacci numbers) in this extremely restrictive language. This is totally different from the C++ experience, where you can start hacking from day one. What you don’t realize is that it will take you 10 years, if you’re lucky, to discover the “right way” of programming in C++ (if there even is such thing). And guess what, the better a C++ programmer you are, the more functional your programs look like. Ask any C++ guru and they will tell you: avoid mutation, avoid side effects, don’t use loops, avoid class hierarchies and inheritance. But you will need strict discipline and total control over your collaborators to pull that off because C++ is so permissive.

Haskell is not permissive, it won’t let you — or your coworkers — write unsafe code. Yes, initially you’ll be scratching your head trying to implement something in Haskell that you could hack in C++ in 10 minutes. If you’re lucky, and you work for Sean Parent or other exceptional programmer, he will code review your hacks and show you how not to program in C++. Otherwise, you might be kept in the dark for decades accumulating self-inflicted wounds and dreaming of dog hairdos.

Resource Management

I started this post with examples of resource management (strictly speaking, memory management), because this is one of my personal favorites. I’ve been advocating and writing about it since the nineties (see bibliography at the end). Obviously I have failed because 20 years later resource management techniques are still not universally known. Bjarne Stroustrup felt obliged to spend half of his opening talk explaining resource management to the crowd of advanced C++ programmers. Again, one could blame incompetent programmers for not accepting resource management as the foundation of C++ programming. The problem though is that there is nothing in the language that would tell a programmer that something is amiss in the code I listed in the beginning of this post. In fact it often feels like learning the correct techniques is like learning a new language.

Why is it so hard? Because in C++ the bulk of resource management is memory management. In fact it has to be stressed repeatedly that garbage collection would not solve the problem of managing resources: There will always be file handles, window handles, open databases and transactions, etc. These are important resources, but their management is overshadowed by the tedium of memory management. The reason C++ doesn’t have garbage collection is not because it can’t be done in an efficient way, but because C++ itself is hostile to GC. The compiler and the runtime have to always assume the worst — not only that any pointer can alias any other pointer but that a memory address can be stored as an integer or its lower bits could be used as bitfields (that’s why only conservative garbage collectors are considered for C++).

It’s a common but false belief that reference counting (using shared pointers in particular) is better than garbage collection. There is actual research showing that the two approaches are just two sides of the same coin. You should realize that deleting a shared pointer may lead to an arbitrary long pause in program execution, with similar performance characteristics as a garbage sweep. It’s not only because every serious reference counting algorithm must be able to deal with cycles, but also because every time a reference count goes to zero on a piece of data a whole graph of pointers reachable from that object has to be traversed. A data structure built with shared pointers might take a long time to delete and, except for simple cases, you’ll never know which shared pointer will go out of scope last and trigger it.

Careful resource management and spare use of shared_ptr might still be defendable for single-threaded programs, but the moment you start using concurrency, you’re in big trouble. Every increment or decrement of the counter requires locking! This locking is usually implemented with atomic variables, but so are mutexes! Don’t be fooled: accessing atomic variables is expensive. Which brings me to the central problem with C++.

Concurrency and Parallelism

It’s been 8 years since Herb Sutter famously exclaimed: The Free Lunch is Over! Ever since then the big C++ oil tanker has been slowly changing its course. It’s not like concurrency was invented in 2005. Posix threads have been defined in 1995. Microsoft introduced threads in Windows 95 and multiprocessor support in Windows NT. Still, concurrency has only been acknowledged in the C++ Standard in 2011.

C++11 had to start from scratch. It had to define the memory model: when and in what order memory writes from multiple threads become visible to other threads. For all practical purposes, the C++ memory model was copied from Java (minus some controversial guarantees that Java made about behavior under data races). In a nutshell, C++ programs are sequentially consistent if there are no data races. However, since C++ had to compete with the assembly language, the full memory model includes so called weak atomics, which I would describe as portable data races, and recommend staying away from.

C++11 also defined primitives for thread creation and management, and basic synchronization primitives as defined by Dijkstra and Hoare back in the 1960s, such as mutexes and condition variables. One could argue whether these are indeed the right building blocks for synchronization, but maybe that doesn’t really matter because they are known not to be composable anyway. The composable abstraction for synchronization is STM (Software Transactional Memory), which is hard to implement correctly and efficiently in an imperative language. There is an STM study group in the Standards Committee, so there is a chance it might one day become part of the Standard. But because C++ offers no control over effects, it will be very hard to use properly.

There was also a misguided and confusing attempt at providing support for task-based parallelism with async tasks and non-composable futures (both seriously considered for deprecation in C++14). Thread-local variables were also standardized making task-based approach that much harder. Locks and condition variables are also tied to threads, not tasks. So that was pretty much a disaster. The Standards Committee has the work cut out for them for many years ahead. That includes task-based composable parallelism, communication channels to replace futures (one would hope), task cancellation and, probably longer term, data-driven parallelism, including GPU support. A derivative of Microsoft PPL and Intel TBB should become part of the Standard (hopefully not Microsoft AMP).

Let’s take a great leap of faith and assume that all these things will be standardized and implemented by, say, 2015. Even if that happens, I still don’t think people will be able to use C++ for mainstream parallel programming. C++ has been designed for single thread programming, and parallel programming requires a revolutionary rather than evolutionary change. Two words: data races. Imperative languages offer no protection against data races — maybe with the exception of D.

In C++, data is shared between threads by default, is mutable by default, and functions have side effects almost by default. All those pointers and references create fertile grounds for data races, and the vulnerability of data structures and functions to races is in no way reflected in the type system. In C++, even if you have a const reference to an object, there is no guarantee that another thread won’t modify it. Still worse, any references inside a const object are mutable by default.

D at least has the notion of deep constness and immutability (no thread can change an immutable data structure). Another nod towards concurrency from D is the ability to define pure functions. Also, in D, mutable objects are not shared between threads by default. It is a step in the right direction, even though it imposes runtime cost for shared objects. Most importantly though, threads are not a good abstraction for parallel programming, so this approach won’t work with lightweight tasks and work-stealing queues, where tasks are passed between threads.

But C++ doesn’t support any of this and it doesn’t look like it ever will.

Of course, you might recognize all these pro-concurrency and parallelism features as functional programming — immutability and pure functions in particular. At the risk of sounding repetitive: Haskell is way ahead of the curve with respect to parallelism, including GPU programming. That was the reason I so easily converted to Haskell after years of evangelizing good programming practices in C++. Every programmer who’s serious about concurrency and parallelism should learn enough Haskell to understand how it deals with it. There is an excellent book by Simon Marlow, Parallel and Concurrent Programming in Haskell. After you read it, you will either start using functional techniques in your C++ programming, or realize what an impedance mismatch there is between parallel programming and an imperative language, and you will switch to Haskell.


I believe that the C++ language and its philosophy are in direct conflict with the requirements of parallel programming. This conflict is responsible for the very slow uptake of parallel programming in mainstream software development. The power of multicore processors, vector units, and GPUs is being squandered by the industry because of an obsolete programming paradigm.


Here I put together some of my publications about resource management:

  1. Bartosz Milewski, “Resource Management in C++,” Journal of Object Oriented Programming, March/April 1997, Vol. 10, No 1. p. 14-22. This is still pre-unique_ptr, so I’m using auto_ptr for what it’s worth. Since you can’t have vectors of auto_ptr I implemented an auto_vector.
  2. C++ Report in September 1998 and February 1999 (still using auto_ptr).
  3. C++ in Action (still auto_ptr), Addison Wesley 2001. See an excerpt from this book that talks about resource management.
  4. Walking Down Memory Lane, with Andrei Alexandrescu, CUJ October 2005 (using unique_ptr)
  5. unique_ptr–How Unique is it?, WordPress, 2009

Here are some of my blogs criticizing the C++11 approach to concurrency:

  1. Async Tasks in C++11: Not Quite There Yet
  2. Broken promises–C++0x futures

It was my first experience working with the C++ Standardization Committee in a subgroup dedicated to concurrency and parallelism. I won’t bore you with details — they will be available at the committee web site. I’ll share my overall impressions and then focus on specific areas where I have strong opinions.

Being an outsider I considered the C++ Standard the ultimate word. If I had problems interpreting the letter of the Standard I would ask one of the committee members for interpretation and assume that I would get the same answer from any of them. Reality turned out to be more complex than that. C++ Standard is full of controversial topics. Some of those controversies could not be resolved in time, so often the wording of the Standard is intentionally vague. Some features were not ready for inclusion so little stubs were inserted into the document that sometimes don’t make much sense in isolation.

One such example is the intentional vagueness and the lack of definition of thread of execution. Not only is a thread undefined, some of the semantics are expressed using the “as if” language. In particular the thingie started by std::async is supposed to behave “as if” it were run in a separate thread of execution (whatever that means). At some point I had a long email exchange about it with Anthony Williams and Hans Boehm that resulted in a blog post. I thought the things were settled until I was alerted to the fact that Microsoft’s interpretation of the Standard was slightly different, and their “as if” didn’t include thread_local variables, at least not in the beta of the new Visual C++.

Here’s the problem: std::async was introduced in the Standard as a compromise between the idea that it’s just syntactic sugar over std::thread creation, and the idea that it’s an opening for task-based parallelism. In fact when I first tried std::async using Anthony Williams’ Just Thread library I expected it to run on a thread pool complete with work stealing and thread reuse. Not so, argued Anthony and Hans, pointing among others things to the problem of managing thread-local variables — are they supposed to be local with respect to the underlying OS thread, or to a smaller units of execution, the tasks?. If multiple tasks are reusing the same thread should they see fresh versions of thread_local variables? When should thread-local variables be destroyed if the lifetime of pool threads is theoretically infinite?

Now, Microsoft has its implementation of task-based concurrency in the form of PPL (Parallel Pattern Library). Intel has TBB (Threading Building Blocks), which is a superset of PPL and it also runs on Linux. I can understand the eagerness of those companies to bend the (intentionally vague) rules and make these libraries accessible through std::async, especially if they can dramatically improve performance.

I’d be the first to vote for this proposal, except for a few unsolved problems.

First of all, Microsoft wanted to change the semantics of std::async when called with launch_policy::async. I think this was pretty much ruled out in the ensuing discussion. Pure async case should be indistinguishable from direct creation of std::thread. Any attempt at using a thread pool behind the scenes could result in deadlocks. Essentially, the programmer must have a guarantee that all the tasks will be allowed to run in parallel no matter how many there are. Just imagine a bunch of tasks trying to communicate with each other back and forth. If thread creation is throttled down after N of them start and possibly block waiting for responses from the rest of them, they might block forever. Thread pools usually have the ability to create new threads on demand, but it’s never obvious when a new thread must be created. Even if the pool could detect all the threads that are blocked, it couldn’t detect those that are busy-spinning. This is why std::async with launch_policy::async must always create, or at least immediately steal, a thread.

The situation is different with std::async called with the default launch policy (the bitwise OR of launch_policy::async and launch_policy::deferred). In that case the runtime does not guarantee that all tasks will be able to run in parallel. In fact the programmer must be prepared for the possibility that all tasks run serially in the context of the parent thread (more specifically, in the context of the thread that calls future::get). Here the problem with using a thread pool is different. It has to do with the lifetimes of thread_local variables that I mentioned before. This is a serious problem and the semantics defined by the current Standard are far from natural. As it stands, a task created using the default launch policy must either run on a completely new thread, in which case that thread defines the lifetimes of thread_local variables; or it must be deferred, in which case it shares thread_local variables with its parent (again, strictly speaking, with the caller of future::get — if the future is passed to a different thread). This behavior might seem confusing, but at least it’s well defined.

Here’s how Herb Sutter proposed to solve the problem of making tasks run in a thread pool: Disallow non-POD thread_locals altogether. The argument was that nobody has implemented non-POD thread locals anyway, so nobody will suffer. Anthony Williams’ and Boost implementations were dismissed as library-based.

This seems to me like a violation of the spirit of C++, but there is a precedent for it: atomic variables. You can declare a POD (Plain Old Data, including simple structs) as atomic and, if it fits inside a hardware supported atomic word, it will become a lock-free atomic; otherwise a lock will be provided free of charge (well, you’ll pay for it with performance, but that’s a different story). But you can’t define a non-POD as atomic!

A quick straw poll showed that the subcommittee was equally split between those who were willing to discuss this change and those who weren’t. It seems though that Microsoft will go ahead with its PPL implementation ignoring the problems with thread_local (and also with DLL_THREAD_DETACH handlers I mentioned in my blog). So you might want to restrict the use of non-POD thread-local variables for the time being.

This discussion had a larger context: The proposal to introduce thread pools into the language/library as first class objects. Google’s Jeffrey Yaskin described their Executor library, which combines thread pools with work-stealing queues and schedulers. PPL has a similar construct called task group. In this new context, std::async would only provide an interface to a global default thread-pool/executor/task-group. The introduction of first-class thread pools would take away the pressure to modify the semantics of std::async. If you cared about the way your tasks are scheduled, you could spawn them using a dedicated thread-pool object. Having an explicit object representing a set of tasks would also allow collective operations such as wait-for-all or cancel.

Which brings me to another topic: composable futures. I wrote a blog post some time ago, Broken Promises: C++0x Futures, in which I lamented the lack of composability of futures. I followed it with another blog, Futures Done Right, proposing a solution. So I was very happy to learn about a new proposal to fix C++ futures. The proposal came from an unexpected source — C#.

The newest addition to C# is support for asynchronous interfaces (somewhat similar to Boost::ASIO). This is a hot topic at Microsoft because the new Windows 8 runtime is based on asynchronous API — any call that might take more than 50ms is implemented as an asynchronous API. Of course you can program to asynchronous API by writing completion handlers, but it’s a very tedious and error-prone method. Microsoft’s Mads Torgersen described how C# offers several layers of support for asynchronous programming.

But what caught my interest was how C# deals with composition of futures (they call them task objects). They have the analog of an aggregate join called WhenAll and an equivalent of “select” called WhenAny. However these combinators do not block; instead they return new futures. There is another important combinator, ContinueWith. You give it a function (usually a lambda) that will be called when the task completes. And again, ContinueWith doesn’t block — it returns another future, which may be composed with other futures, and so on. This is exactly what makes C# futures composable and, hopefully, C++ will adopt a similar approach.

Of course there is much more to the async proposal, and I wish I had more time to talk about it; but the composable integration of asynchronicity with task-based concurrency is in my eyes a perfect example of thoughtful design.

I noticed that there seems to be a problem with C++’s aversion to generalizations (I might be slightly biased having studied Haskell with its love for generalizations). Problems are often treated in separation, and specific solutions are provided for each, sometimes without a serious attempt at generalization. Case in point: cancellation of tasks. A very specialized solution involving cancellation tokens was proposed. You get opaque tokens from a factory, you pass them to tasks (either explicitly or by lambda capture), and the tasks are responsible for polling the tokens and performing appropriate cancellation actions. But this is an example of an asynchronous Boolean channel. Instead of defining channels, C++ is considering a special-purpose one-shot solution (unless there is a volunteer willing who will write a channels proposal). By the way, futures can be also viewed as channels, so this generalization might go a long way.

Another candidate for generalization was the Intel vectorization proposal presented by Robert Geva. Of course it would be great to support the use of vector processors in C++. But you have to see it in the larger context of data-driven parallelism. It doesn’t make sense to have separate solutions for vector processors, multicores running in SIMD mode, and GPGPUs. What’s needed is general support for data parallelism that allows multiple hardware-specific specializations. Hopefully a more general proposal will materialize.

The C++ Standards Committee is doing a great job, considering all the limitations it’s facing. The committee will not add anything to the language unless there are volunteers who will write proposals and demonstrate working implementations. Remember, you too can contribute to the future of C++.

My new blog post is at the FP Commplete web site where I work now. It explains the major unsolved problem of imperative programming and why I turned to functional programming. There is also an animated discussion on reddit.


Next Page »