How would you like a job in the supercomputing industry? Programming those powerful Ks, Jaguars, Roadrunners, Blue Genes, or gigantic clusters of computers? How inspiring would that be?

Not much, according to the luminaries of the field. I went to a panel about the future of supercomputing at SC11, and learned that the future is… Fortran, MPI, OpenMP and CUDA. I have no reason to doubt the experts; after all some of them were with the industry when it was all ferrite core memory and punch cards. But it makes me wonder if there is a future at all for supercomputing, if things keep going in this direction.

Let me explain: Programming in Fortran, MPI (Message Passing Interface), OpenMP (a system of annotations for C or Fortran to help the compiler parallelize the program), and CUDA (Compute Unified Device Architecture for programming GPGPUs) is tedious, uninspiring, and boring.

I talked to a CS student who was demonstrating his summer work at the booth belonging to one of the large national labs. It was a project to improve Monte Carlo simulations of some physical processes. It was done, unsurprisingly, using MPI and OpenMP. I asked him what the exciting part of the job was. It was the learning of the Monte Carlo method. The rest was the tedium of combining barely compatible clunky programming paradigms into a workable program.

Why does it matter? Because a thriving industry or a company must attract talent. And talent can’t be bought, at least not easily. There was once a study, which showed that, above a certain compensation level, talented people don’t care so much about salaries as they do about the novelty, excitement, and freedom. Google knows it very well: They create an exciting work environments (I call them day-care centers for programmers), and encourage their employees to spend 20% of their time pursuing their own projects. No wonder there is an underground pipeline from Microsoft to Google through which the talent keeps leaking out.

By the way, I worked for Microsoft back when it was exciting. Our salaries were rather mediocre, but we felt the urge to work long hours and weekends because we felt that our contributions mattered. Unlike today, sales and marketing were not driving the company, developers were.

To confuse matters even more for the executives, programmers are relatively cheap. The cooling bill for a data center dwarfs the cost of software development. Let’s face it, from a distance, a programmer might look just like another commodity, like a computer rack, air conditioner, or a router. This is even more pronounced in supercomputing, where a single rack might go for a million dollars–an equivalent of 10-20 programmer/years.

If you drain all the excitement from work, your company, or the whole industry, is bound to stagnate. Bored people don’t innovate. And we know from experience that, in high tech industries, if you don’t innovate, you die. Old programming paradigms might have worked for years, but new unmet challenges are piling up. A lot of work that required supercomputers in the past is now done on clusters of off-the-shelf components. Google owns one of the largest supercomputers in the world, and it’s all built from cheap commodity boxes. But Google lets its people innovate.

But not everything is bleak in the land of supercomputers. I have met two teams that were brimming with ideas and enthusiasm: one was Brad Chamberlain’s Cray Chapel team and the other was Hartmut Kaiser’s Louisiana State University Ste||ar team. I’m sure there were many others, but those were the ones I had the pleasure of meeting outside of the exhibition hall.

You can tell that a team is dedicated to a task if they can’t stop talking about their work even after a few beers. Young creative people are attracted like moths to interesting and challenging projects. I don’t think writing simulations using OpenMP and MPI, even if they run on Cray X-MP, can generate this kind of enthusiasm.